{"title":"建立基因型-环境相关性和与数量性状位点相互作用模型的一些原则","authors":"Edwin J. C. G. Van Den Oord","doi":"10.1046/j.1466-9218.2000.00021.x","DOIUrl":null,"url":null,"abstract":"<p>Genotype measurements will increasingly be used in scientific disciplines to study genotype–environment correlations and interactions, and strengthen research designs. This report summarizes some principles for using quantitative trait loci in statistical models. Special attention is paid to the importance of choosing a suitable parameterization, the use of parents and/or siblings to control for population stratification, and the modelling of heterogeneous and correlated error variances.</p>","PeriodicalId":100575,"journal":{"name":"GeneScreen","volume":"1 2","pages":"97-99"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1046/j.1466-9218.2000.00021.x","citationCount":"0","resultStr":"{\"title\":\"Some principles for modelling genotype–environment correlations and interactions with quantitative trait loci\",\"authors\":\"Edwin J. C. G. Van Den Oord\",\"doi\":\"10.1046/j.1466-9218.2000.00021.x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Genotype measurements will increasingly be used in scientific disciplines to study genotype–environment correlations and interactions, and strengthen research designs. This report summarizes some principles for using quantitative trait loci in statistical models. Special attention is paid to the importance of choosing a suitable parameterization, the use of parents and/or siblings to control for population stratification, and the modelling of heterogeneous and correlated error variances.</p>\",\"PeriodicalId\":100575,\"journal\":{\"name\":\"GeneScreen\",\"volume\":\"1 2\",\"pages\":\"97-99\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1046/j.1466-9218.2000.00021.x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GeneScreen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1046/j.1466-9218.2000.00021.x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GeneScreen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1046/j.1466-9218.2000.00021.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Some principles for modelling genotype–environment correlations and interactions with quantitative trait loci
Genotype measurements will increasingly be used in scientific disciplines to study genotype–environment correlations and interactions, and strengthen research designs. This report summarizes some principles for using quantitative trait loci in statistical models. Special attention is paid to the importance of choosing a suitable parameterization, the use of parents and/or siblings to control for population stratification, and the modelling of heterogeneous and correlated error variances.