临界不连续非线性Kirchhoff型问题正解的存在性

IF 0.9 4区 数学 Q2 Mathematics
G. Figueiredo, G. G. Santos
{"title":"临界不连续非线性Kirchhoff型问题正解的存在性","authors":"G. Figueiredo, G. G. Santos","doi":"10.5186/AASFM.2019.4453","DOIUrl":null,"url":null,"abstract":"In this paper we are concerned with existence of positive solution to the class of nonlinear problems of the Kirchhoff type given by Lǫ(u) = H(u− β)f(u) + u 2 ∗ −1 in R , u ∈ H(R ) ∩W 2, q q−1 (R ), where N ≥ 3, q ∈ (2, 2∗), ǫ, β > 0 are positive parameters, f : R → R is a continuous function, H is the Heaviside function, i.e., H(t) = 0 if t ≤ 0, H(t) = 1 if t > 0 and Lǫ(u) := [ M ( 1 ǫN−2 ˆ","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Existence of positive solution for Kirchhoff type problem with critical discontinuous nonlinearity\",\"authors\":\"G. Figueiredo, G. G. Santos\",\"doi\":\"10.5186/AASFM.2019.4453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we are concerned with existence of positive solution to the class of nonlinear problems of the Kirchhoff type given by Lǫ(u) = H(u− β)f(u) + u 2 ∗ −1 in R , u ∈ H(R ) ∩W 2, q q−1 (R ), where N ≥ 3, q ∈ (2, 2∗), ǫ, β > 0 are positive parameters, f : R → R is a continuous function, H is the Heaviside function, i.e., H(t) = 0 if t ≤ 0, H(t) = 1 if t > 0 and Lǫ(u) := [ M ( 1 ǫN−2 ˆ\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/AASFM.2019.4453\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/AASFM.2019.4453","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们所关心的存在正解的一类非线性问题基尔霍夫类型由Lǫ(u) = H (u−β)f (u) + u 2∗−1 R u∈H (R)∩W 2 q q−1 (R),其中N≥3,问∈(2,2∗),ǫ,β> 0是积极的参数,f:→R是一个连续函数,H是亥维赛函数,也就是说,H (t) = 0如果t≤0 H (t) = 1如果t > 0和Lǫ(u): = [M(1ǫN−2ˆ
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of positive solution for Kirchhoff type problem with critical discontinuous nonlinearity
In this paper we are concerned with existence of positive solution to the class of nonlinear problems of the Kirchhoff type given by Lǫ(u) = H(u− β)f(u) + u 2 ∗ −1 in R , u ∈ H(R ) ∩W 2, q q−1 (R ), where N ≥ 3, q ∈ (2, 2∗), ǫ, β > 0 are positive parameters, f : R → R is a continuous function, H is the Heaviside function, i.e., H(t) = 0 if t ≤ 0, H(t) = 1 if t > 0 and Lǫ(u) := [ M ( 1 ǫN−2 ˆ
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信