具有循环平行* -Ricci张量的π π和π h2中的实超曲面

Pub Date : 2021-09-27 DOI:10.1556/012.2021.58.3.1501
Yaning Wang, Wenjie Wang
{"title":"具有循环平行* -Ricci张量的π π和π h2中的实超曲面","authors":"Yaning Wang, Wenjie Wang","doi":"10.1556/012.2021.58.3.1501","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that the ∗-Ricci tensor of a real hypersurface in complex projective plane ℂP\n 2 or complex hyperbolic plane ℂH\n 2 is cyclic parallel if and only if the hypersurface is of type (A). We find some three-dimensional real hypersurfaces having non-vanishing and non-parallel ∗-Ricci tensors which are cyclic parallel.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real Hypersurfaces in ℂP 2 and ℂH 2 with Cyclic Parallel ∗-Ricci Tensor\",\"authors\":\"Yaning Wang, Wenjie Wang\",\"doi\":\"10.1556/012.2021.58.3.1501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove that the ∗-Ricci tensor of a real hypersurface in complex projective plane ℂP\\n 2 or complex hyperbolic plane ℂH\\n 2 is cyclic parallel if and only if the hypersurface is of type (A). We find some three-dimensional real hypersurfaces having non-vanishing and non-parallel ∗-Ricci tensors which are cyclic parallel.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1556/012.2021.58.3.1501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2021.58.3.1501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了复投影平面(2p)或复双曲平面(h2)上的实超曲面的∗-Ricci张量是循环平行的,当且仅当该超曲面为(a)型。我们发现了一些三维实超曲面具有不消失且不平行的∗-Ricci张量是循环平行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Real Hypersurfaces in ℂP 2 and ℂH 2 with Cyclic Parallel ∗-Ricci Tensor
In this paper, we prove that the ∗-Ricci tensor of a real hypersurface in complex projective plane ℂP 2 or complex hyperbolic plane ℂH 2 is cyclic parallel if and only if the hypersurface is of type (A). We find some three-dimensional real hypersurfaces having non-vanishing and non-parallel ∗-Ricci tensors which are cyclic parallel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信