具有循环平行* -Ricci张量的π π和π h2中的实超曲面

IF 0.4 4区 数学 Q4 MATHEMATICS
Yaning Wang, Wenjie Wang
{"title":"具有循环平行* -Ricci张量的π π和π h2中的实超曲面","authors":"Yaning Wang, Wenjie Wang","doi":"10.1556/012.2021.58.3.1501","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that the ∗-Ricci tensor of a real hypersurface in complex projective plane ℂP\n 2 or complex hyperbolic plane ℂH\n 2 is cyclic parallel if and only if the hypersurface is of type (A). We find some three-dimensional real hypersurfaces having non-vanishing and non-parallel ∗-Ricci tensors which are cyclic parallel.","PeriodicalId":51187,"journal":{"name":"Studia Scientiarum Mathematicarum Hungarica","volume":"79 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real Hypersurfaces in ℂP 2 and ℂH 2 with Cyclic Parallel ∗-Ricci Tensor\",\"authors\":\"Yaning Wang, Wenjie Wang\",\"doi\":\"10.1556/012.2021.58.3.1501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove that the ∗-Ricci tensor of a real hypersurface in complex projective plane ℂP\\n 2 or complex hyperbolic plane ℂH\\n 2 is cyclic parallel if and only if the hypersurface is of type (A). We find some three-dimensional real hypersurfaces having non-vanishing and non-parallel ∗-Ricci tensors which are cyclic parallel.\",\"PeriodicalId\":51187,\"journal\":{\"name\":\"Studia Scientiarum Mathematicarum Hungarica\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Scientiarum Mathematicarum Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1556/012.2021.58.3.1501\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Scientiarum Mathematicarum Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2021.58.3.1501","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了复投影平面(2p)或复双曲平面(h2)上的实超曲面的∗-Ricci张量是循环平行的,当且仅当该超曲面为(a)型。我们发现了一些三维实超曲面具有不消失且不平行的∗-Ricci张量是循环平行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real Hypersurfaces in ℂP 2 and ℂH 2 with Cyclic Parallel ∗-Ricci Tensor
In this paper, we prove that the ∗-Ricci tensor of a real hypersurface in complex projective plane ℂP 2 or complex hyperbolic plane ℂH 2 is cyclic parallel if and only if the hypersurface is of type (A). We find some three-dimensional real hypersurfaces having non-vanishing and non-parallel ∗-Ricci tensors which are cyclic parallel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The journal publishes original research papers on various fields of mathematics, e.g., algebra, algebraic geometry, analysis, combinatorics, dynamical systems, geometry, mathematical logic, mathematical statistics, number theory, probability theory, set theory, statistical physics and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信