{"title":"6k扫描量子低温原子显微镜","authors":"S. Taylor, Fan Yang, Brandon Freudenstein, B. Lev","doi":"10.21468/SCIPOSTPHYS.10.3.060","DOIUrl":null,"url":null,"abstract":"The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) is a quantum sensor in which a quasi-1D quantum gas images electromagnetic fields emitted from a nearby sample. We report improvements to the microscope. Cryogen usage is reduced by replacing the liquid cryostat with a closed-cycle system and modified cold finger, and cryogenic cooling is enhanced by adding a radiation shield. The minimum accessible sample temperature is reduced from 35 K to 5.8 K while maintaining low sample vibrations. A new sample mount is easier to exchange, and quantum gas preparation is streamlined.","PeriodicalId":8441,"journal":{"name":"arXiv: Atomic Physics","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A scanning quantum cryogenic atom microscope at 6 K\",\"authors\":\"S. Taylor, Fan Yang, Brandon Freudenstein, B. Lev\",\"doi\":\"10.21468/SCIPOSTPHYS.10.3.060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) is a quantum sensor in which a quasi-1D quantum gas images electromagnetic fields emitted from a nearby sample. We report improvements to the microscope. Cryogen usage is reduced by replacing the liquid cryostat with a closed-cycle system and modified cold finger, and cryogenic cooling is enhanced by adding a radiation shield. The minimum accessible sample temperature is reduced from 35 K to 5.8 K while maintaining low sample vibrations. A new sample mount is easier to exchange, and quantum gas preparation is streamlined.\",\"PeriodicalId\":8441,\"journal\":{\"name\":\"arXiv: Atomic Physics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Atomic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21468/SCIPOSTPHYS.10.3.060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21468/SCIPOSTPHYS.10.3.060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A scanning quantum cryogenic atom microscope at 6 K
The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) is a quantum sensor in which a quasi-1D quantum gas images electromagnetic fields emitted from a nearby sample. We report improvements to the microscope. Cryogen usage is reduced by replacing the liquid cryostat with a closed-cycle system and modified cold finger, and cryogenic cooling is enhanced by adding a radiation shield. The minimum accessible sample temperature is reduced from 35 K to 5.8 K while maintaining low sample vibrations. A new sample mount is easier to exchange, and quantum gas preparation is streamlined.