使用图形服务网格工具管理大数据流管道

Q1 Computer Science
M. Faizan, C. Prehofer
{"title":"使用图形服务网格工具管理大数据流管道","authors":"M. Faizan, C. Prehofer","doi":"10.1109/IEEECloudSummit52029.2021.00014","DOIUrl":null,"url":null,"abstract":"Current big data frameworks like Apache Flink and Spark enable efficient processing of large-scale streaming data in a distributed setup. For the management of such data pipelines and the computing resources, we propose a combination of a graphical tool for pipeline management, Apache StreamPipes, and container management tools like Kubernetes. For evaluation, we implemented a use case with data preprocessing, vehicle power consumption, and driving behavior services in StreamPipes. We discuss the capabilities of StreamPipes in managing and executing complex stream processing pipelines and also evaluate the possible integration of container and service mesh tools (i.e., Istio) with StreamPipes. Furthermore, we implemented and evaluated a service management layer in our system design to provide extended features. In particular, we evaluated the delay when such a complex pipeline is restarted, e.g. for updates or reconfiguration.","PeriodicalId":54281,"journal":{"name":"IEEE Cloud Computing","volume":"2 1","pages":"35-40"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Managing Big Data Stream Pipelines Using Graphical Service Mesh Tools\",\"authors\":\"M. Faizan, C. Prehofer\",\"doi\":\"10.1109/IEEECloudSummit52029.2021.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current big data frameworks like Apache Flink and Spark enable efficient processing of large-scale streaming data in a distributed setup. For the management of such data pipelines and the computing resources, we propose a combination of a graphical tool for pipeline management, Apache StreamPipes, and container management tools like Kubernetes. For evaluation, we implemented a use case with data preprocessing, vehicle power consumption, and driving behavior services in StreamPipes. We discuss the capabilities of StreamPipes in managing and executing complex stream processing pipelines and also evaluate the possible integration of container and service mesh tools (i.e., Istio) with StreamPipes. Furthermore, we implemented and evaluated a service management layer in our system design to provide extended features. In particular, we evaluated the delay when such a complex pipeline is restarted, e.g. for updates or reconfiguration.\",\"PeriodicalId\":54281,\"journal\":{\"name\":\"IEEE Cloud Computing\",\"volume\":\"2 1\",\"pages\":\"35-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECloudSummit52029.2021.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECloudSummit52029.2021.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

当前的大数据框架,如Apache Flink和Spark,能够在分布式设置中高效地处理大规模流数据。为了管理这样的数据管道和计算资源,我们提出了一个管道管理的图形工具,Apache StreamPipes和容器管理工具(如Kubernetes)的组合。为了进行评估,我们在StreamPipes中实现了一个包含数据预处理、车辆功耗和驾驶行为服务的用例。我们讨论了StreamPipes在管理和执行复杂流处理管道方面的能力,并评估了容器和服务网格工具(如Istio)与StreamPipes集成的可能性。此外,我们在系统设计中实现并评估了一个服务管理层,以提供扩展功能。特别是,我们评估了这样一个复杂的管道重新启动时的延迟,例如更新或重新配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Managing Big Data Stream Pipelines Using Graphical Service Mesh Tools
Current big data frameworks like Apache Flink and Spark enable efficient processing of large-scale streaming data in a distributed setup. For the management of such data pipelines and the computing resources, we propose a combination of a graphical tool for pipeline management, Apache StreamPipes, and container management tools like Kubernetes. For evaluation, we implemented a use case with data preprocessing, vehicle power consumption, and driving behavior services in StreamPipes. We discuss the capabilities of StreamPipes in managing and executing complex stream processing pipelines and also evaluate the possible integration of container and service mesh tools (i.e., Istio) with StreamPipes. Furthermore, we implemented and evaluated a service management layer in our system design to provide extended features. In particular, we evaluated the delay when such a complex pipeline is restarted, e.g. for updates or reconfiguration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Cloud Computing
IEEE Cloud Computing Computer Science-Computer Networks and Communications
CiteScore
11.20
自引率
0.00%
发文量
0
期刊介绍: Cessation. IEEE Cloud Computing is committed to the timely publication of peer-reviewed articles that provide innovative research ideas, applications results, and case studies in all areas of cloud computing. Topics relating to novel theory, algorithms, performance analyses and applications of techniques are covered. More specifically: Cloud software, Cloud security, Trade-offs between privacy and utility of cloud, Cloud in the business environment, Cloud economics, Cloud governance, Migrating to the cloud, Cloud standards, Development tools, Backup and recovery, Interoperability, Applications management, Data analytics, Communications protocols, Mobile cloud, Private clouds, Liability issues for data loss on clouds, Data integration, Big data, Cloud education, Cloud skill sets, Cloud energy consumption, The architecture of cloud computing, Applications in commerce, education, and industry, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Business Process as a Service (BPaaS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信