大映射类群的子群中心和Tits替代

Pub Date : 2019-04-22 DOI:10.3336/gm.55.1.07
Justin Lanier, Marissa Loving
{"title":"大映射类群的子群中心和Tits替代","authors":"Justin Lanier, Marissa Loving","doi":"10.3336/gm.55.1.07","DOIUrl":null,"url":null,"abstract":"In this note we show that many subgroups of mapping class groups of infinite-type surfaces without boundary have trivial centers, including all normal subgroups. Using similar techniques, we show that every nontrivial normal subgroup of a big mapping class group contains a nonabelian free group. In contrast, we show that no big mapping class group satisfies the strong Tits alternative enjoyed by finite-type mapping class groups. We also give examples of big mapping class groups that fail to satisfy even the classical Tits alternative and give a proof that every countable group appears as a subgroup of some big mapping class group.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Centers of subgroups of big mapping class groups and the Tits alternative\",\"authors\":\"Justin Lanier, Marissa Loving\",\"doi\":\"10.3336/gm.55.1.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we show that many subgroups of mapping class groups of infinite-type surfaces without boundary have trivial centers, including all normal subgroups. Using similar techniques, we show that every nontrivial normal subgroup of a big mapping class group contains a nonabelian free group. In contrast, we show that no big mapping class group satisfies the strong Tits alternative enjoyed by finite-type mapping class groups. We also give examples of big mapping class groups that fail to satisfy even the classical Tits alternative and give a proof that every countable group appears as a subgroup of some big mapping class group.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.55.1.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.55.1.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文证明了无界无穷型曲面的映射类群的许多子群具有平凡中心,包括所有正规子群。使用类似的技术,我们证明了一个大映射类群的每个非平凡正规子群包含一个非贝尔自由群。相反,我们证明没有大的映射类群满足有限类型映射类群所享有的强Tits替代。我们还给出了大映射类群甚至不满足经典Tits替代的例子,并证明了每个可数群都是某个大映射类群的子群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Centers of subgroups of big mapping class groups and the Tits alternative
In this note we show that many subgroups of mapping class groups of infinite-type surfaces without boundary have trivial centers, including all normal subgroups. Using similar techniques, we show that every nontrivial normal subgroup of a big mapping class group contains a nonabelian free group. In contrast, we show that no big mapping class group satisfies the strong Tits alternative enjoyed by finite-type mapping class groups. We also give examples of big mapping class groups that fail to satisfy even the classical Tits alternative and give a proof that every countable group appears as a subgroup of some big mapping class group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信