E. Bielecka, M. Luc, C. E. Haque, Parnali Dhar-Chowdhury, S. Hossain, D. Walker
{"title":"孟加拉国达卡市登革热传播和媒介丰度的空间评价","authors":"E. Bielecka, M. Luc, C. E. Haque, Parnali Dhar-Chowdhury, S. Hossain, D. Walker","doi":"10.3390/geographies3020014","DOIUrl":null,"url":null,"abstract":"In recent years, many urban areas in low and middle income countries have experienced major dengue epidemics, and the city of Dhaka, the capital city of Bangladesh, is one of them. Understanding models based on land cover and land use in urban areas in relation to vector abundance and possible disease transmission can be a major epidemiological tool in identifying disease incidence and prevalence. Demographic and human behavioral factors can also play a role in determining microenvironments for entomological distribution—which is a major risk factor for epidemicity. Data collected from a cross-sectional entomological survey in the city of Dhaka during the monsoon season of 2012 and two serological surveys—one pre-monsoon and another post-monsoon in 2012—were analyzed in this study. A total of 898 households and 1003 containers with water were inspected, and 1380 Ae. aegypti pupae and 4174 larvae were counted in these containers. All Stegomyia indices were found to be the highest in the central business and residential mixed zone. The odds ratios of risk factors for seroprevalence, including sex, age, self-reported febrile illness during the previous six months, and travel during the last six months, were calculated; age distribution was found to be a highly significant risk factor (p = value < 0.0001). The study offers clear patterns of dengue viral transmission, disease dynamics, and their association with critical spatial dimensions.","PeriodicalId":38507,"journal":{"name":"Human Geographies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Evaluation of Dengue Transmission and Vector Abundance in the City of Dhaka, Bangladesh\",\"authors\":\"E. Bielecka, M. Luc, C. E. Haque, Parnali Dhar-Chowdhury, S. Hossain, D. Walker\",\"doi\":\"10.3390/geographies3020014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, many urban areas in low and middle income countries have experienced major dengue epidemics, and the city of Dhaka, the capital city of Bangladesh, is one of them. Understanding models based on land cover and land use in urban areas in relation to vector abundance and possible disease transmission can be a major epidemiological tool in identifying disease incidence and prevalence. Demographic and human behavioral factors can also play a role in determining microenvironments for entomological distribution—which is a major risk factor for epidemicity. Data collected from a cross-sectional entomological survey in the city of Dhaka during the monsoon season of 2012 and two serological surveys—one pre-monsoon and another post-monsoon in 2012—were analyzed in this study. A total of 898 households and 1003 containers with water were inspected, and 1380 Ae. aegypti pupae and 4174 larvae were counted in these containers. All Stegomyia indices were found to be the highest in the central business and residential mixed zone. The odds ratios of risk factors for seroprevalence, including sex, age, self-reported febrile illness during the previous six months, and travel during the last six months, were calculated; age distribution was found to be a highly significant risk factor (p = value < 0.0001). The study offers clear patterns of dengue viral transmission, disease dynamics, and their association with critical spatial dimensions.\",\"PeriodicalId\":38507,\"journal\":{\"name\":\"Human Geographies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Geographies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/geographies3020014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Geographies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geographies3020014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
Spatial Evaluation of Dengue Transmission and Vector Abundance in the City of Dhaka, Bangladesh
In recent years, many urban areas in low and middle income countries have experienced major dengue epidemics, and the city of Dhaka, the capital city of Bangladesh, is one of them. Understanding models based on land cover and land use in urban areas in relation to vector abundance and possible disease transmission can be a major epidemiological tool in identifying disease incidence and prevalence. Demographic and human behavioral factors can also play a role in determining microenvironments for entomological distribution—which is a major risk factor for epidemicity. Data collected from a cross-sectional entomological survey in the city of Dhaka during the monsoon season of 2012 and two serological surveys—one pre-monsoon and another post-monsoon in 2012—were analyzed in this study. A total of 898 households and 1003 containers with water were inspected, and 1380 Ae. aegypti pupae and 4174 larvae were counted in these containers. All Stegomyia indices were found to be the highest in the central business and residential mixed zone. The odds ratios of risk factors for seroprevalence, including sex, age, self-reported febrile illness during the previous six months, and travel during the last six months, were calculated; age distribution was found to be a highly significant risk factor (p = value < 0.0001). The study offers clear patterns of dengue viral transmission, disease dynamics, and their association with critical spatial dimensions.