{"title":"Banach空间中螺旋形映射的Fekete-Szego问题及其非线性解","authors":"M. Elin, Fiana Jacobzon","doi":"10.24193/subbmath.2022.2.09","DOIUrl":null,"url":null,"abstract":"\"We study the FeketeSzego problem on the open unit ball of a complex Banach space. Namely, the FeketeSzego inequalities are proved for the class of spirallike mappings relative to an arbitrary strongly accretive operator, and some of its subclasses. Next, we consider families of non-linear resolvents for holomorphically accretive mappings vanishing at the origin. We solve the Fekete- Szego problem over these families.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Fekete-Szego problem for spirallike mappings and non-linear resolvents in Banach spaces\",\"authors\":\"M. Elin, Fiana Jacobzon\",\"doi\":\"10.24193/subbmath.2022.2.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"We study the FeketeSzego problem on the open unit ball of a complex Banach space. Namely, the FeketeSzego inequalities are proved for the class of spirallike mappings relative to an arbitrary strongly accretive operator, and some of its subclasses. Next, we consider families of non-linear resolvents for holomorphically accretive mappings vanishing at the origin. We solve the Fekete- Szego problem over these families.\\\"\",\"PeriodicalId\":30022,\"journal\":{\"name\":\"Studia Universitatis BabesBolyai Geologia\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis BabesBolyai Geologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2022.2.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2022.2.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Fekete-Szego problem for spirallike mappings and non-linear resolvents in Banach spaces
"We study the FeketeSzego problem on the open unit ball of a complex Banach space. Namely, the FeketeSzego inequalities are proved for the class of spirallike mappings relative to an arbitrary strongly accretive operator, and some of its subclasses. Next, we consider families of non-linear resolvents for holomorphically accretive mappings vanishing at the origin. We solve the Fekete- Szego problem over these families."