{"title":"具有白噪声势的二维抛物型Anderson模型的长期渐近性","authors":"W. Konig, Nicolas Perkowski, W. V. Zuijlen","doi":"10.1214/21-aihp1215","DOIUrl":null,"url":null,"abstract":"We consider the parabolic Anderson model (PAM) $\\partial_t u = \\frac12 \\Delta u + \\xi u$ in $\\mathbb R^2$ with a Gaussian (space) white-noise potential $\\xi$. We prove that the almost-sure large-time asymptotic behaviour of the total mass at time $t$, written $U(t)$, is given by $\\log U(t)\\sim \\chi t \\log t$, with the deterministic constant $\\chi$ identified in terms of a variational formula. In earlier work of one of the authors this constant was used to describe the asymptotic behaviour principal Dirichlet of the eigenvalue $\\boldsymbol \\lambda_1(Q_t)$ of the Anderson operator on the box $Q_t= [-\\frac{t}{2},\\frac{t}{2}]^2$ by $\\boldsymbol \\lambda_1(Q_t)\\sim\\chi\\log t$.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Longtime asymptotics of the two-dimensional parabolic Anderson model with white-noise potential\",\"authors\":\"W. Konig, Nicolas Perkowski, W. V. Zuijlen\",\"doi\":\"10.1214/21-aihp1215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the parabolic Anderson model (PAM) $\\\\partial_t u = \\\\frac12 \\\\Delta u + \\\\xi u$ in $\\\\mathbb R^2$ with a Gaussian (space) white-noise potential $\\\\xi$. We prove that the almost-sure large-time asymptotic behaviour of the total mass at time $t$, written $U(t)$, is given by $\\\\log U(t)\\\\sim \\\\chi t \\\\log t$, with the deterministic constant $\\\\chi$ identified in terms of a variational formula. In earlier work of one of the authors this constant was used to describe the asymptotic behaviour principal Dirichlet of the eigenvalue $\\\\boldsymbol \\\\lambda_1(Q_t)$ of the Anderson operator on the box $Q_t= [-\\\\frac{t}{2},\\\\frac{t}{2}]^2$ by $\\\\boldsymbol \\\\lambda_1(Q_t)\\\\sim\\\\chi\\\\log t$.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-aihp1215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aihp1215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Longtime asymptotics of the two-dimensional parabolic Anderson model with white-noise potential
We consider the parabolic Anderson model (PAM) $\partial_t u = \frac12 \Delta u + \xi u$ in $\mathbb R^2$ with a Gaussian (space) white-noise potential $\xi$. We prove that the almost-sure large-time asymptotic behaviour of the total mass at time $t$, written $U(t)$, is given by $\log U(t)\sim \chi t \log t$, with the deterministic constant $\chi$ identified in terms of a variational formula. In earlier work of one of the authors this constant was used to describe the asymptotic behaviour principal Dirichlet of the eigenvalue $\boldsymbol \lambda_1(Q_t)$ of the Anderson operator on the box $Q_t= [-\frac{t}{2},\frac{t}{2}]^2$ by $\boldsymbol \lambda_1(Q_t)\sim\chi\log t$.