具有白噪声势的二维抛物型Anderson模型的长期渐近性

IF 1.5 Q2 PHYSICS, MATHEMATICAL
W. Konig, Nicolas Perkowski, W. V. Zuijlen
{"title":"具有白噪声势的二维抛物型Anderson模型的长期渐近性","authors":"W. Konig, Nicolas Perkowski, W. V. Zuijlen","doi":"10.1214/21-aihp1215","DOIUrl":null,"url":null,"abstract":"We consider the parabolic Anderson model (PAM) $\\partial_t u = \\frac12 \\Delta u + \\xi u$ in $\\mathbb R^2$ with a Gaussian (space) white-noise potential $\\xi$. We prove that the almost-sure large-time asymptotic behaviour of the total mass at time $t$, written $U(t)$, is given by $\\log U(t)\\sim \\chi t \\log t$, with the deterministic constant $\\chi$ identified in terms of a variational formula. In earlier work of one of the authors this constant was used to describe the asymptotic behaviour principal Dirichlet of the eigenvalue $\\boldsymbol \\lambda_1(Q_t)$ of the Anderson operator on the box $Q_t= [-\\frac{t}{2},\\frac{t}{2}]^2$ by $\\boldsymbol \\lambda_1(Q_t)\\sim\\chi\\log t$.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Longtime asymptotics of the two-dimensional parabolic Anderson model with white-noise potential\",\"authors\":\"W. Konig, Nicolas Perkowski, W. V. Zuijlen\",\"doi\":\"10.1214/21-aihp1215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the parabolic Anderson model (PAM) $\\\\partial_t u = \\\\frac12 \\\\Delta u + \\\\xi u$ in $\\\\mathbb R^2$ with a Gaussian (space) white-noise potential $\\\\xi$. We prove that the almost-sure large-time asymptotic behaviour of the total mass at time $t$, written $U(t)$, is given by $\\\\log U(t)\\\\sim \\\\chi t \\\\log t$, with the deterministic constant $\\\\chi$ identified in terms of a variational formula. In earlier work of one of the authors this constant was used to describe the asymptotic behaviour principal Dirichlet of the eigenvalue $\\\\boldsymbol \\\\lambda_1(Q_t)$ of the Anderson operator on the box $Q_t= [-\\\\frac{t}{2},\\\\frac{t}{2}]^2$ by $\\\\boldsymbol \\\\lambda_1(Q_t)\\\\sim\\\\chi\\\\log t$.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-aihp1215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aihp1215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 13

摘要

我们考虑抛物线型安德森模型(PAM)。 $\partial_t u = \frac12 \Delta u + \xi u$ 在 $\mathbb R^2$ 具有高斯(空间)白噪声势 $\xi$. 我们证明了总质量在时间上的几乎确定的大时渐近行为 $t$,写的 $U(t)$,由 $\log U(t)\sim \chi t \log t$,带有确定性常数 $\chi$ 用变分公式表示。在一位作者的早期工作中,这个常数被用来描述特征值的渐近行为主狄利克雷 $\boldsymbol \lambda_1(Q_t)$ 安德森接线员的电话 $Q_t= [-\frac{t}{2},\frac{t}{2}]^2$ 通过 $\boldsymbol \lambda_1(Q_t)\sim\chi\log t$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Longtime asymptotics of the two-dimensional parabolic Anderson model with white-noise potential
We consider the parabolic Anderson model (PAM) $\partial_t u = \frac12 \Delta u + \xi u$ in $\mathbb R^2$ with a Gaussian (space) white-noise potential $\xi$. We prove that the almost-sure large-time asymptotic behaviour of the total mass at time $t$, written $U(t)$, is given by $\log U(t)\sim \chi t \log t$, with the deterministic constant $\chi$ identified in terms of a variational formula. In earlier work of one of the authors this constant was used to describe the asymptotic behaviour principal Dirichlet of the eigenvalue $\boldsymbol \lambda_1(Q_t)$ of the Anderson operator on the box $Q_t= [-\frac{t}{2},\frac{t}{2}]^2$ by $\boldsymbol \lambda_1(Q_t)\sim\chi\log t$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信