的数值半径点 ${\mathcal L}(^m l_{\infty}^n:l_{\infty}^n)$

Q4 Mathematics
Sung Guen Kim
{"title":"的数值半径点 ${\\mathcal L}(^m l_{\\infty}^n:l_{\\infty}^n)$","authors":"Sung Guen Kim","doi":"10.53733/179","DOIUrl":null,"url":null,"abstract":"For $n\\geq 2$ and a real Banach space $E,$ ${\\mathcal L}(^n E:E)$ denotes the space of all continuous $n$-linear mappings from $E$ to itself.Let $$\\Pi(E)=\\Big\\{~[x^*, (x_1, \\ldots, x_n)]: x^{*}(x_j)=\\|x^{*}\\|=\\|x_j\\|=1~\\mbox{for}~{j=1, \\ldots, n}~\\Big\\}.$$For $T\\in {\\mathcal L}(^n E:E),$ we define $${\\rm Nrad}({T})=\\Big\\{~[x^*, (x_1, \\ldots, x_n)]\\in \\Pi(E): |x^{*}(T(x_1, \\ldots, x_n))|=v(T)~\\Big\\},$$where $v(T)$ denotes the numerical radius of $T$.$T$ is called {\\em numerical radius peak mapping} if there is $[x^{*}, (x_1, \\ldots, x_n)]\\in \\Pi(E)$ that satisfies ${\\rm Nrad}({T})=\\Big\\{~\\pm [x^{*}, (x_1, \\ldots, x_n)]~\\Big\\}.$\nIn this paper we classify ${\\rm Nrad}({T})$ for every $T\\in {\\mathcal L}(^2 l_{\\infty}^2: l_{\\infty}^2)$ in connection with the set of the norm attaining points of $T$.We also characterize all numerical radius peak mappings in ${\\mathcalL}(^m l_{\\infty}^n:l_{\\infty}^n)$ for $n, m\\geq 2,$ where $l_{\\infty}^n=\\mathbb{R}^n$ with the supremum norm.","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical radius points of ${\\\\mathcal L}(^m l_{\\\\infty}^n:l_{\\\\infty}^n)$\",\"authors\":\"Sung Guen Kim\",\"doi\":\"10.53733/179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For $n\\\\geq 2$ and a real Banach space $E,$ ${\\\\mathcal L}(^n E:E)$ denotes the space of all continuous $n$-linear mappings from $E$ to itself.Let $$\\\\Pi(E)=\\\\Big\\\\{~[x^*, (x_1, \\\\ldots, x_n)]: x^{*}(x_j)=\\\\|x^{*}\\\\|=\\\\|x_j\\\\|=1~\\\\mbox{for}~{j=1, \\\\ldots, n}~\\\\Big\\\\}.$$For $T\\\\in {\\\\mathcal L}(^n E:E),$ we define $${\\\\rm Nrad}({T})=\\\\Big\\\\{~[x^*, (x_1, \\\\ldots, x_n)]\\\\in \\\\Pi(E): |x^{*}(T(x_1, \\\\ldots, x_n))|=v(T)~\\\\Big\\\\},$$where $v(T)$ denotes the numerical radius of $T$.$T$ is called {\\\\em numerical radius peak mapping} if there is $[x^{*}, (x_1, \\\\ldots, x_n)]\\\\in \\\\Pi(E)$ that satisfies ${\\\\rm Nrad}({T})=\\\\Big\\\\{~\\\\pm [x^{*}, (x_1, \\\\ldots, x_n)]~\\\\Big\\\\}.$\\nIn this paper we classify ${\\\\rm Nrad}({T})$ for every $T\\\\in {\\\\mathcal L}(^2 l_{\\\\infty}^2: l_{\\\\infty}^2)$ in connection with the set of the norm attaining points of $T$.We also characterize all numerical radius peak mappings in ${\\\\mathcalL}(^m l_{\\\\infty}^n:l_{\\\\infty}^n)$ for $n, m\\\\geq 2,$ where $l_{\\\\infty}^n=\\\\mathbb{R}^n$ with the supremum norm.\",\"PeriodicalId\":30137,\"journal\":{\"name\":\"New Zealand Journal of Mathematics\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Zealand Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53733/179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

因为 $n\geq 2$ 和一个真正的巴拿赫空间 $E,$ ${\mathcal L}(^n E:E)$ 表示所有连续的空间 $n$-线性映射 $E$ 自言自语。让 $$\Pi(E)=\Big\{~[x^*, (x_1, \ldots, x_n)]: x^{*}(x_j)=\|x^{*}\|=\|x_j\|=1~\mbox{for}~{j=1, \ldots, n}~\Big\}.$$因为 $T\in {\mathcal L}(^n E:E),$ 我们定义 $${\rm Nrad}({T})=\Big\{~[x^*, (x_1, \ldots, x_n)]\in \Pi(E): |x^{*}(T(x_1, \ldots, x_n))|=v(T)~\Big\},$$在哪里 $v(T)$ 的数值半径 $T$.$T$ 叫做 {\em 数值半径峰映射} 如果有的话 $[x^{*}, (x_1, \ldots, x_n)]\in \Pi(E)$ 这满足 ${\rm Nrad}({T})=\Big\{~\pm [x^{*}, (x_1, \ldots, x_n)]~\Big\}.$在本文中,我们进行了分类 ${\rm Nrad}({T})$ 对于每一个 $T\in {\mathcal L}(^2 l_{\infty}^2: l_{\infty}^2)$ 的范数达到点的集合 $T$我们也描述了所有数值半径峰映射 ${\mathcalL}(^m l_{\infty}^n:l_{\infty}^n)$ 为了 $n, m\geq 2,$ 在哪里 $l_{\infty}^n=\mathbb{R}^n$ 用最高规范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical radius points of ${\mathcal L}(^m l_{\infty}^n:l_{\infty}^n)$
For $n\geq 2$ and a real Banach space $E,$ ${\mathcal L}(^n E:E)$ denotes the space of all continuous $n$-linear mappings from $E$ to itself.Let $$\Pi(E)=\Big\{~[x^*, (x_1, \ldots, x_n)]: x^{*}(x_j)=\|x^{*}\|=\|x_j\|=1~\mbox{for}~{j=1, \ldots, n}~\Big\}.$$For $T\in {\mathcal L}(^n E:E),$ we define $${\rm Nrad}({T})=\Big\{~[x^*, (x_1, \ldots, x_n)]\in \Pi(E): |x^{*}(T(x_1, \ldots, x_n))|=v(T)~\Big\},$$where $v(T)$ denotes the numerical radius of $T$.$T$ is called {\em numerical radius peak mapping} if there is $[x^{*}, (x_1, \ldots, x_n)]\in \Pi(E)$ that satisfies ${\rm Nrad}({T})=\Big\{~\pm [x^{*}, (x_1, \ldots, x_n)]~\Big\}.$ In this paper we classify ${\rm Nrad}({T})$ for every $T\in {\mathcal L}(^2 l_{\infty}^2: l_{\infty}^2)$ in connection with the set of the norm attaining points of $T$.We also characterize all numerical radius peak mappings in ${\mathcalL}(^m l_{\infty}^n:l_{\infty}^n)$ for $n, m\geq 2,$ where $l_{\infty}^n=\mathbb{R}^n$ with the supremum norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Zealand Journal of Mathematics
New Zealand Journal of Mathematics Mathematics-Algebra and Number Theory
CiteScore
1.10
自引率
0.00%
发文量
11
审稿时长
50 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信