{"title":"可见光下煅烧温度对WO3材料光催化降解四环素活性的影响","authors":"N. T. Huong, Nguyen Viet Khoa, Nguyen Thi Hanh, Hoang Thu Trang, Dang Quang Truong, Nguyen Chi Cuong, Nguyen Phuong Hoang Anh, Ngo Truc Quynh, Bui Thi Phuong Thao, Nguyen Thi Thu Hoai, Pham Thanh Dong","doi":"10.25073/2588-1140/vnunst.5542","DOIUrl":null,"url":null,"abstract":"In the research, we successfully investigated effects of calcination temperature on the characteristics and photocatalytic activities of WO3 applying for degradation of antibiotics in aqueous environment under visible light. The crystal phases and optical properties of the synthesized WO3 nanoparticles were determined by an X-ray diffractometer (XRD), an UV-VIS diffuse reflectance spectroscopy (UV-VIS) and a photoluminescence spectroscopy (PL). The photocatalytic activities of the WO3 materials, which were calcinated at different temperatures, were studied via degradation of Tetracycline under visible light. Obtained results indicated that the orthorhombic phase was converted completely to monoclinic phase when the sample was calcinated at 500 oC. As compared to these WO3-300, WO3-400 and WO3-600 samples, the WO3-500 sample, which was calcinated at 500 oC, showed significant decrease in band gap energy and electron-hole recombination rate. Thus, the WO3-500 exhibited novel photocatalytic activity for Tetracycline degradation under visible light.","PeriodicalId":23524,"journal":{"name":"VNU Journal of Science: Natural Sciences and Technology","volume":"218 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Calcination Temperature on Photocatalytic Activity of WO3 Materials for Tetracycline Degradation in Aqueous Environment under Visible Light\",\"authors\":\"N. T. Huong, Nguyen Viet Khoa, Nguyen Thi Hanh, Hoang Thu Trang, Dang Quang Truong, Nguyen Chi Cuong, Nguyen Phuong Hoang Anh, Ngo Truc Quynh, Bui Thi Phuong Thao, Nguyen Thi Thu Hoai, Pham Thanh Dong\",\"doi\":\"10.25073/2588-1140/vnunst.5542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the research, we successfully investigated effects of calcination temperature on the characteristics and photocatalytic activities of WO3 applying for degradation of antibiotics in aqueous environment under visible light. The crystal phases and optical properties of the synthesized WO3 nanoparticles were determined by an X-ray diffractometer (XRD), an UV-VIS diffuse reflectance spectroscopy (UV-VIS) and a photoluminescence spectroscopy (PL). The photocatalytic activities of the WO3 materials, which were calcinated at different temperatures, were studied via degradation of Tetracycline under visible light. Obtained results indicated that the orthorhombic phase was converted completely to monoclinic phase when the sample was calcinated at 500 oC. As compared to these WO3-300, WO3-400 and WO3-600 samples, the WO3-500 sample, which was calcinated at 500 oC, showed significant decrease in band gap energy and electron-hole recombination rate. Thus, the WO3-500 exhibited novel photocatalytic activity for Tetracycline degradation under visible light.\",\"PeriodicalId\":23524,\"journal\":{\"name\":\"VNU Journal of Science: Natural Sciences and Technology\",\"volume\":\"218 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VNU Journal of Science: Natural Sciences and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25073/2588-1140/vnunst.5542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Natural Sciences and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1140/vnunst.5542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of Calcination Temperature on Photocatalytic Activity of WO3 Materials for Tetracycline Degradation in Aqueous Environment under Visible Light
In the research, we successfully investigated effects of calcination temperature on the characteristics and photocatalytic activities of WO3 applying for degradation of antibiotics in aqueous environment under visible light. The crystal phases and optical properties of the synthesized WO3 nanoparticles were determined by an X-ray diffractometer (XRD), an UV-VIS diffuse reflectance spectroscopy (UV-VIS) and a photoluminescence spectroscopy (PL). The photocatalytic activities of the WO3 materials, which were calcinated at different temperatures, were studied via degradation of Tetracycline under visible light. Obtained results indicated that the orthorhombic phase was converted completely to monoclinic phase when the sample was calcinated at 500 oC. As compared to these WO3-300, WO3-400 and WO3-600 samples, the WO3-500 sample, which was calcinated at 500 oC, showed significant decrease in band gap energy and electron-hole recombination rate. Thus, the WO3-500 exhibited novel photocatalytic activity for Tetracycline degradation under visible light.