{"title":"纳米流体太阳能制冷系统的实验与性能分析","authors":"M. Sivakumar, S. Mahalingam, Ranjithkumar","doi":"10.37255/jme.v4i2pp086-089","DOIUrl":null,"url":null,"abstract":"In today’s world refrigeration systems play a vital role to fulfil the human needs. A\ncontinuous research is being carried out by many researchers in order to improve the performance of these systems. Presently used, vapour compression refrigeration system does not work efficiently due to shortage of electric power. This study covers a broad overview of solar photovoltaic technology, which uses easily available solar energy for refrigeration purpose. It includes a motor, a compressor,\nan inverter and battery, a photovoltaic controller and panels. This can be done by converting solar energy in to electricity by means of photovoltaic devices, which can be utilized by the electric motor to drive vapour compression refrigeration system. The main objective of the study is managing the shortage of electric power, in living environments by using a cooling system coupled to a solar installation. In this solar refrigeration system, when conventional refrigerants like (R22, HFCR134a,\nR600, etc.) are used it leads to low thermal conductivity, heat transfer rate and COP level and some of the other impacts are acid rain, melting of glaciers, sea level raising, health impacts, atmospheric pollution, ozone depletion, which is very hazardous to the environment. To avoid these threats, one of the ways is to use nanofluids which are not harmful to the environment. The usage of nanofluids results in high thermal conductivity, heat transfer rate and give better COP level. The following three\nnanofluids Al2o3, Zro2, Cu2o have been already used in the refrigeration system. Some of the properties of given nanofluids will be changed to innovate new nanofluids. The innovated nanofluids will be used in refrigeration system and the same will be compared with other nanofluids like R22, R134a, R290, and R600a. Even though Al2o3, Zro2, Cu2o gives good results, the new nanofluids have been innovated for better results.","PeriodicalId":38895,"journal":{"name":"Academic Journal of Manufacturing Engineering","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXPERIMENTAL AND PERFORMANCE ANALYSIS OF SOLAR REFRIGERATION SYSTEM USING NANO FLUIDS\",\"authors\":\"M. Sivakumar, S. Mahalingam, Ranjithkumar\",\"doi\":\"10.37255/jme.v4i2pp086-089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today’s world refrigeration systems play a vital role to fulfil the human needs. A\\ncontinuous research is being carried out by many researchers in order to improve the performance of these systems. Presently used, vapour compression refrigeration system does not work efficiently due to shortage of electric power. This study covers a broad overview of solar photovoltaic technology, which uses easily available solar energy for refrigeration purpose. It includes a motor, a compressor,\\nan inverter and battery, a photovoltaic controller and panels. This can be done by converting solar energy in to electricity by means of photovoltaic devices, which can be utilized by the electric motor to drive vapour compression refrigeration system. The main objective of the study is managing the shortage of electric power, in living environments by using a cooling system coupled to a solar installation. In this solar refrigeration system, when conventional refrigerants like (R22, HFCR134a,\\nR600, etc.) are used it leads to low thermal conductivity, heat transfer rate and COP level and some of the other impacts are acid rain, melting of glaciers, sea level raising, health impacts, atmospheric pollution, ozone depletion, which is very hazardous to the environment. To avoid these threats, one of the ways is to use nanofluids which are not harmful to the environment. The usage of nanofluids results in high thermal conductivity, heat transfer rate and give better COP level. The following three\\nnanofluids Al2o3, Zro2, Cu2o have been already used in the refrigeration system. Some of the properties of given nanofluids will be changed to innovate new nanofluids. The innovated nanofluids will be used in refrigeration system and the same will be compared with other nanofluids like R22, R134a, R290, and R600a. Even though Al2o3, Zro2, Cu2o gives good results, the new nanofluids have been innovated for better results.\",\"PeriodicalId\":38895,\"journal\":{\"name\":\"Academic Journal of Manufacturing Engineering\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Manufacturing Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37255/jme.v4i2pp086-089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37255/jme.v4i2pp086-089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
EXPERIMENTAL AND PERFORMANCE ANALYSIS OF SOLAR REFRIGERATION SYSTEM USING NANO FLUIDS
In today’s world refrigeration systems play a vital role to fulfil the human needs. A
continuous research is being carried out by many researchers in order to improve the performance of these systems. Presently used, vapour compression refrigeration system does not work efficiently due to shortage of electric power. This study covers a broad overview of solar photovoltaic technology, which uses easily available solar energy for refrigeration purpose. It includes a motor, a compressor,
an inverter and battery, a photovoltaic controller and panels. This can be done by converting solar energy in to electricity by means of photovoltaic devices, which can be utilized by the electric motor to drive vapour compression refrigeration system. The main objective of the study is managing the shortage of electric power, in living environments by using a cooling system coupled to a solar installation. In this solar refrigeration system, when conventional refrigerants like (R22, HFCR134a,
R600, etc.) are used it leads to low thermal conductivity, heat transfer rate and COP level and some of the other impacts are acid rain, melting of glaciers, sea level raising, health impacts, atmospheric pollution, ozone depletion, which is very hazardous to the environment. To avoid these threats, one of the ways is to use nanofluids which are not harmful to the environment. The usage of nanofluids results in high thermal conductivity, heat transfer rate and give better COP level. The following three
nanofluids Al2o3, Zro2, Cu2o have been already used in the refrigeration system. Some of the properties of given nanofluids will be changed to innovate new nanofluids. The innovated nanofluids will be used in refrigeration system and the same will be compared with other nanofluids like R22, R134a, R290, and R600a. Even though Al2o3, Zro2, Cu2o gives good results, the new nanofluids have been innovated for better results.