计算Dedekind ζ函数的零点

Elchin Hasanalizade, Quanli Shen, PENG-JIE Wong
{"title":"计算Dedekind ζ函数的零点","authors":"Elchin Hasanalizade, Quanli Shen, PENG-JIE Wong","doi":"10.1090/MCOM/3665","DOIUrl":null,"url":null,"abstract":"Given a number field $K$ of degree $n_K$ and with absolute discriminant $d_K$, we obtain an explicit bound for the number $N_K(T)$ of non-trivial zeros (counted with multiplicity), with height at most $T$, of the Dedekind zeta function $\\zeta_K(s)$ of $K$. More precisely, we show that for $T \\geq 1$, $$ \\Big| N_K (T) - \\frac{T}{\\pi} \\log \\Big( d_K \\Big( \\frac{T}{2\\pi e}\\Big)^{n_K}\\Big)\\Big| \n\\le 0.228 (\\log d_K + n_K \\log T) + 23.108 n_K + 4.520, $$ which improves previous results of Kadiri and Ng, and Trudgian. The improvement is based on ideas from the recent work of Bennett $et$ $al.$ on counting zeros of Dirichlet $L$-functions.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"32 1","pages":"277-293"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Counting zeros of Dedekind zeta functions\",\"authors\":\"Elchin Hasanalizade, Quanli Shen, PENG-JIE Wong\",\"doi\":\"10.1090/MCOM/3665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a number field $K$ of degree $n_K$ and with absolute discriminant $d_K$, we obtain an explicit bound for the number $N_K(T)$ of non-trivial zeros (counted with multiplicity), with height at most $T$, of the Dedekind zeta function $\\\\zeta_K(s)$ of $K$. More precisely, we show that for $T \\\\geq 1$, $$ \\\\Big| N_K (T) - \\\\frac{T}{\\\\pi} \\\\log \\\\Big( d_K \\\\Big( \\\\frac{T}{2\\\\pi e}\\\\Big)^{n_K}\\\\Big)\\\\Big| \\n\\\\le 0.228 (\\\\log d_K + n_K \\\\log T) + 23.108 n_K + 4.520, $$ which improves previous results of Kadiri and Ng, and Trudgian. The improvement is based on ideas from the recent work of Bennett $et$ $al.$ on counting zeros of Dirichlet $L$-functions.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"32 1\",\"pages\":\"277-293\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/MCOM/3665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/MCOM/3665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

给定一个阶为$n_K$的数字域$K$,并且具有绝对判别式$d_K$,我们得到了$K$的Dedekind zeta函数$\zeta_K(s)$的高度不超过$T$的非平凡零(用多重数计数)个数$N_K(T)$的显式边界。更准确地说,我们显示了$T \geq 1$, $$ \Big| N_K (T) - \frac{T}{\pi} \log \Big( d_K \Big( \frac{T}{2\pi e}\Big)^{n_K}\Big)\Big| \le 0.228 (\log d_K + n_K \log T) + 23.108 n_K + 4.520, $$,这改进了Kadiri, Ng和Trudgian之前的结果。这一改进是基于Bennett $et$$al.$最近关于Dirichlet $L$ -函数的零计数工作的想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counting zeros of Dedekind zeta functions
Given a number field $K$ of degree $n_K$ and with absolute discriminant $d_K$, we obtain an explicit bound for the number $N_K(T)$ of non-trivial zeros (counted with multiplicity), with height at most $T$, of the Dedekind zeta function $\zeta_K(s)$ of $K$. More precisely, we show that for $T \geq 1$, $$ \Big| N_K (T) - \frac{T}{\pi} \log \Big( d_K \Big( \frac{T}{2\pi e}\Big)^{n_K}\Big)\Big| \le 0.228 (\log d_K + n_K \log T) + 23.108 n_K + 4.520, $$ which improves previous results of Kadiri and Ng, and Trudgian. The improvement is based on ideas from the recent work of Bennett $et$ $al.$ on counting zeros of Dirichlet $L$-functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信