{"title":"计算Dedekind ζ函数的零点","authors":"Elchin Hasanalizade, Quanli Shen, PENG-JIE Wong","doi":"10.1090/MCOM/3665","DOIUrl":null,"url":null,"abstract":"Given a number field $K$ of degree $n_K$ and with absolute discriminant $d_K$, we obtain an explicit bound for the number $N_K(T)$ of non-trivial zeros (counted with multiplicity), with height at most $T$, of the Dedekind zeta function $\\zeta_K(s)$ of $K$. More precisely, we show that for $T \\geq 1$, $$ \\Big| N_K (T) - \\frac{T}{\\pi} \\log \\Big( d_K \\Big( \\frac{T}{2\\pi e}\\Big)^{n_K}\\Big)\\Big| \n\\le 0.228 (\\log d_K + n_K \\log T) + 23.108 n_K + 4.520, $$ which improves previous results of Kadiri and Ng, and Trudgian. The improvement is based on ideas from the recent work of Bennett $et$ $al.$ on counting zeros of Dirichlet $L$-functions.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"32 1","pages":"277-293"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Counting zeros of Dedekind zeta functions\",\"authors\":\"Elchin Hasanalizade, Quanli Shen, PENG-JIE Wong\",\"doi\":\"10.1090/MCOM/3665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a number field $K$ of degree $n_K$ and with absolute discriminant $d_K$, we obtain an explicit bound for the number $N_K(T)$ of non-trivial zeros (counted with multiplicity), with height at most $T$, of the Dedekind zeta function $\\\\zeta_K(s)$ of $K$. More precisely, we show that for $T \\\\geq 1$, $$ \\\\Big| N_K (T) - \\\\frac{T}{\\\\pi} \\\\log \\\\Big( d_K \\\\Big( \\\\frac{T}{2\\\\pi e}\\\\Big)^{n_K}\\\\Big)\\\\Big| \\n\\\\le 0.228 (\\\\log d_K + n_K \\\\log T) + 23.108 n_K + 4.520, $$ which improves previous results of Kadiri and Ng, and Trudgian. The improvement is based on ideas from the recent work of Bennett $et$ $al.$ on counting zeros of Dirichlet $L$-functions.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"32 1\",\"pages\":\"277-293\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/MCOM/3665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/MCOM/3665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Given a number field $K$ of degree $n_K$ and with absolute discriminant $d_K$, we obtain an explicit bound for the number $N_K(T)$ of non-trivial zeros (counted with multiplicity), with height at most $T$, of the Dedekind zeta function $\zeta_K(s)$ of $K$. More precisely, we show that for $T \geq 1$, $$ \Big| N_K (T) - \frac{T}{\pi} \log \Big( d_K \Big( \frac{T}{2\pi e}\Big)^{n_K}\Big)\Big|
\le 0.228 (\log d_K + n_K \log T) + 23.108 n_K + 4.520, $$ which improves previous results of Kadiri and Ng, and Trudgian. The improvement is based on ideas from the recent work of Bennett $et$ $al.$ on counting zeros of Dirichlet $L$-functions.