类$C_{12}$ acr流形的Weyl张量及其应用

IF 0.3 Q4 MATHEMATICS
A. Mohammed Yousif, Qusay S. A. Al-Zamil
{"title":"类$C_{12}$ acr流形的Weyl张量及其应用","authors":"A. Mohammed Yousif, Qusay S. A. Al-Zamil","doi":"10.35634/2226-3594-2022-59-01","DOIUrl":null,"url":null,"abstract":"In this paper, we determine the components of the Weyl tensor of almost contact metric (ACR-) manifold of class $C_{12}$ on associated G-structure (AG-structure) space. As an application, we prove that the conformally flat ACR-manifold of class $C_{12}$ with $n>2$ is an $\\eta$-Einstein manifold and conclude that it is an Einstein manifold such that the scalar curvature $r$ has provided. Also, the case when $n=2$ is discussed explicitly. Moreover, the relationships among conformally flat, conformally symmetric, $\\xi$-conformally flat and $\\Phi$-invariant Ricci tensor have been widely considered here and consequently we determine the value of scalar curvature $r$ explicitly with other applications. Finally, we define new classes with identities analogously to Gray identities and discuss their connections with class $C_{12}$ of ACR-manifold.","PeriodicalId":42053,"journal":{"name":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Weyl tensor of ACR-manifolds of class $C_{12}$ with applications\",\"authors\":\"A. Mohammed Yousif, Qusay S. A. Al-Zamil\",\"doi\":\"10.35634/2226-3594-2022-59-01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we determine the components of the Weyl tensor of almost contact metric (ACR-) manifold of class $C_{12}$ on associated G-structure (AG-structure) space. As an application, we prove that the conformally flat ACR-manifold of class $C_{12}$ with $n>2$ is an $\\\\eta$-Einstein manifold and conclude that it is an Einstein manifold such that the scalar curvature $r$ has provided. Also, the case when $n=2$ is discussed explicitly. Moreover, the relationships among conformally flat, conformally symmetric, $\\\\xi$-conformally flat and $\\\\Phi$-invariant Ricci tensor have been widely considered here and consequently we determine the value of scalar curvature $r$ explicitly with other applications. Finally, we define new classes with identities analogously to Gray identities and discuss their connections with class $C_{12}$ of ACR-manifold.\",\"PeriodicalId\":42053,\"journal\":{\"name\":\"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35634/2226-3594-2022-59-01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/2226-3594-2022-59-01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文确定了相关g结构(ag -结构)空间上$C_{12}$类几乎接触度量流形(ACR-)的Weyl张量的分量。作为应用,我们证明了含有$n>2$类$C_{12}$的共形平坦acr流形是$\eta$ -爱因斯坦流形,并得出它是标量曲率$r$所提供的爱因斯坦流形。此外,还明确地讨论了$n=2$的情况。此外,本文还广泛地考虑了共形平坦、共形对称、$\xi$ -共形平坦和$\Phi$ -不变Ricci张量之间的关系,从而通过其他应用明确地确定了标量曲率$r$的值。最后,我们定义了类似于Gray恒等式的新类,并讨论了它们与acr流形中$C_{12}$类的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Weyl tensor of ACR-manifolds of class $C_{12}$ with applications
In this paper, we determine the components of the Weyl tensor of almost contact metric (ACR-) manifold of class $C_{12}$ on associated G-structure (AG-structure) space. As an application, we prove that the conformally flat ACR-manifold of class $C_{12}$ with $n>2$ is an $\eta$-Einstein manifold and conclude that it is an Einstein manifold such that the scalar curvature $r$ has provided. Also, the case when $n=2$ is discussed explicitly. Moreover, the relationships among conformally flat, conformally symmetric, $\xi$-conformally flat and $\Phi$-invariant Ricci tensor have been widely considered here and consequently we determine the value of scalar curvature $r$ explicitly with other applications. Finally, we define new classes with identities analogously to Gray identities and discuss their connections with class $C_{12}$ of ACR-manifold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信