Milad Fakhari, J. Raymond, R. Martel, S. Dugdale, N. Bergeron
{"title":"魁北克北部含鲑鱼的亚北极河流中热避难所和水温模式的识别","authors":"Milad Fakhari, J. Raymond, R. Martel, S. Dugdale, N. Bergeron","doi":"10.3390/geographies2030032","DOIUrl":null,"url":null,"abstract":"In summer, salmonids can experience thermal stress during extreme weather conditions. This may affect their growth and even threaten their survival. Cool water zones in rivers constitute thermal refuges, allowing fish to be more comfortable to grow and survive in extreme events. Therefore, identifying and understanding the spatiotemporal variability of discrete thermal refuges and larger scale cooling zones in rivers is of fundamental interest. This study analyzes thermal refuges as well as cooling zones in two salmonid rivers in a subarctic climate by use of thermal infrared (TIR) imagery. The two studied rivers are the Koroc and Berard Rivers, in Nunavik, Quebec, Canada. On the 17 km studied section of the Berard River, four thermal refuges and five cooling zones were detected, covering 46% of the surveyed section of the river. On the 41 km section studied for the Koroc River, 67 thermal refuges and five cooling zones were identified which represent 32% of the studied section of the river. 89% of identified thermal refuges and about 60% of cooling zones are groundwater-controlled. Continuity of permafrost and shape of the river valley were found to be the main parameters controlling the distribution of refuges and cooling zones. These data provide important insights into planning and conservation measures for the salmonid population of subarctic Nunavik rivers.","PeriodicalId":38507,"journal":{"name":"Human Geographies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Identification of Thermal Refuges and Water Temperature Patterns in Salmonid-Bearing Subarctic Rivers of Northern Quebec\",\"authors\":\"Milad Fakhari, J. Raymond, R. Martel, S. Dugdale, N. Bergeron\",\"doi\":\"10.3390/geographies2030032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In summer, salmonids can experience thermal stress during extreme weather conditions. This may affect their growth and even threaten their survival. Cool water zones in rivers constitute thermal refuges, allowing fish to be more comfortable to grow and survive in extreme events. Therefore, identifying and understanding the spatiotemporal variability of discrete thermal refuges and larger scale cooling zones in rivers is of fundamental interest. This study analyzes thermal refuges as well as cooling zones in two salmonid rivers in a subarctic climate by use of thermal infrared (TIR) imagery. The two studied rivers are the Koroc and Berard Rivers, in Nunavik, Quebec, Canada. On the 17 km studied section of the Berard River, four thermal refuges and five cooling zones were detected, covering 46% of the surveyed section of the river. On the 41 km section studied for the Koroc River, 67 thermal refuges and five cooling zones were identified which represent 32% of the studied section of the river. 89% of identified thermal refuges and about 60% of cooling zones are groundwater-controlled. Continuity of permafrost and shape of the river valley were found to be the main parameters controlling the distribution of refuges and cooling zones. These data provide important insights into planning and conservation measures for the salmonid population of subarctic Nunavik rivers.\",\"PeriodicalId\":38507,\"journal\":{\"name\":\"Human Geographies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Geographies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/geographies2030032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Geographies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geographies2030032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
Identification of Thermal Refuges and Water Temperature Patterns in Salmonid-Bearing Subarctic Rivers of Northern Quebec
In summer, salmonids can experience thermal stress during extreme weather conditions. This may affect their growth and even threaten their survival. Cool water zones in rivers constitute thermal refuges, allowing fish to be more comfortable to grow and survive in extreme events. Therefore, identifying and understanding the spatiotemporal variability of discrete thermal refuges and larger scale cooling zones in rivers is of fundamental interest. This study analyzes thermal refuges as well as cooling zones in two salmonid rivers in a subarctic climate by use of thermal infrared (TIR) imagery. The two studied rivers are the Koroc and Berard Rivers, in Nunavik, Quebec, Canada. On the 17 km studied section of the Berard River, four thermal refuges and five cooling zones were detected, covering 46% of the surveyed section of the river. On the 41 km section studied for the Koroc River, 67 thermal refuges and five cooling zones were identified which represent 32% of the studied section of the river. 89% of identified thermal refuges and about 60% of cooling zones are groundwater-controlled. Continuity of permafrost and shape of the river valley were found to be the main parameters controlling the distribution of refuges and cooling zones. These data provide important insights into planning and conservation measures for the salmonid population of subarctic Nunavik rivers.