{"title":"关于Lecacheux的五次多项式族","authors":"A. Hoshi, Masakazu Koshiba","doi":"10.3792/pjaa.97.001","DOIUrl":null,"url":null,"abstract":"Kida, Rikuna and Sato [KRS10] developed a classification theory for Brumer's quintic polynomials via Kummer theory arising from associated elliptic curves. We generalize their results to elliptic curves associated to Lecacheux's quintic $F_{20}$-polynomials instead of Brumer's quintic $D_5$-polynomials.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Lecacheux’s family of quintic polynomials\",\"authors\":\"A. Hoshi, Masakazu Koshiba\",\"doi\":\"10.3792/pjaa.97.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kida, Rikuna and Sato [KRS10] developed a classification theory for Brumer's quintic polynomials via Kummer theory arising from associated elliptic curves. We generalize their results to elliptic curves associated to Lecacheux's quintic $F_{20}$-polynomials instead of Brumer's quintic $D_5$-polynomials.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3792/pjaa.97.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/pjaa.97.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kida, Rikuna and Sato [KRS10] developed a classification theory for Brumer's quintic polynomials via Kummer theory arising from associated elliptic curves. We generalize their results to elliptic curves associated to Lecacheux's quintic $F_{20}$-polynomials instead of Brumer's quintic $D_5$-polynomials.