电子帆任务加速器,ESME:软件架构和初始ESTCube月球立方体电子帆实验设计

IF 0.1 4区 工程技术 Q4 ENGINEERING, AEROSPACE
Mario F. F. Palos, P. Janhunen, P. Toivanen, M. Tajmar, I. Iakubivskyi, Aldo Micciani, Nicola Orsini, Johan Kütt, Agnes Rohtsalu, J. Dalbins, Hans Teras, Kristo Allaje, M. Pajusalu, L. Niccolai, M. Bassetto, G. Mengali, A. Quarta, N. Ivchenko, Joan Stude, A. Vaivads, A. Tamm, A. Slavinskis
{"title":"电子帆任务加速器,ESME:软件架构和初始ESTCube月球立方体电子帆实验设计","authors":"Mario F. F. Palos, P. Janhunen, P. Toivanen, M. Tajmar, I. Iakubivskyi, Aldo Micciani, Nicola Orsini, Johan Kütt, Agnes Rohtsalu, J. Dalbins, Hans Teras, Kristo Allaje, M. Pajusalu, L. Niccolai, M. Bassetto, G. Mengali, A. Quarta, N. Ivchenko, Joan Stude, A. Vaivads, A. Tamm, A. Slavinskis","doi":"10.3390/aerospace10080694","DOIUrl":null,"url":null,"abstract":"The electric solar wind sail, or E-sail, is a novel deep space propulsion concept which has not been demonstrated in space yet. While the solar wind is the authentic operational environment of the electric sail, its fundamentals can be demonstrated in the ionosphere where the E-sail can be used as a plasma brake for deorbiting. Two missions to be launched in 2023, Foresail-1p and ESTCube-2, will attempt to demonstrate Coulomb drag propulsion (an umbrella term for the E-sail and plasma brake) in low Earth orbit. This paper presents the next step of bringing the E-sail to deep space—we provide the initial modelling and trajectory analysis of demonstrating the E-sail in solar wind. The preliminary analysis assumes a six-unit cubesat being inserted in the lunar orbit where it deploys several hundred meters of the E-sail tether and charges the tether at 10–20 kV. The spacecraft will experience acceleration due to the solar wind particles being deflected by the electrostatic sheath around the charged tether. The paper includes two new concepts: the software architecture of a new mission design tool, the Electric Sail Mission Expeditor (ESME), and the initial E-sail experiment design for the lunar orbit. Our solar-wind simulation places the Electric Sail Test Cube (ESTCube) lunar cubesat with the E-sail tether in average solar wind conditions and we estimate a force of 1.51e−4 N produced by the Coulomb drag on a 2 km tether charged to 20 kV. Our trajectory analysis takes the 15 kg cubesat from the lunar back to the Earth orbit in under three years assuming a 2 km long tether and 20 kV. The results of this paper are used to set scientific requirements for the conceptional ESTCube lunar nanospacecraft mission design to be published subsequently in the Special Issue “Advances in CubeSat Sails and Tethers”.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"30 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electric Sail Mission Expeditor, ESME: Software Architecture and Initial ESTCube Lunar Cubesat E-Sail Experiment Design\",\"authors\":\"Mario F. F. Palos, P. Janhunen, P. Toivanen, M. Tajmar, I. Iakubivskyi, Aldo Micciani, Nicola Orsini, Johan Kütt, Agnes Rohtsalu, J. Dalbins, Hans Teras, Kristo Allaje, M. Pajusalu, L. Niccolai, M. Bassetto, G. Mengali, A. Quarta, N. Ivchenko, Joan Stude, A. Vaivads, A. Tamm, A. Slavinskis\",\"doi\":\"10.3390/aerospace10080694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electric solar wind sail, or E-sail, is a novel deep space propulsion concept which has not been demonstrated in space yet. While the solar wind is the authentic operational environment of the electric sail, its fundamentals can be demonstrated in the ionosphere where the E-sail can be used as a plasma brake for deorbiting. Two missions to be launched in 2023, Foresail-1p and ESTCube-2, will attempt to demonstrate Coulomb drag propulsion (an umbrella term for the E-sail and plasma brake) in low Earth orbit. This paper presents the next step of bringing the E-sail to deep space—we provide the initial modelling and trajectory analysis of demonstrating the E-sail in solar wind. The preliminary analysis assumes a six-unit cubesat being inserted in the lunar orbit where it deploys several hundred meters of the E-sail tether and charges the tether at 10–20 kV. The spacecraft will experience acceleration due to the solar wind particles being deflected by the electrostatic sheath around the charged tether. The paper includes two new concepts: the software architecture of a new mission design tool, the Electric Sail Mission Expeditor (ESME), and the initial E-sail experiment design for the lunar orbit. Our solar-wind simulation places the Electric Sail Test Cube (ESTCube) lunar cubesat with the E-sail tether in average solar wind conditions and we estimate a force of 1.51e−4 N produced by the Coulomb drag on a 2 km tether charged to 20 kV. Our trajectory analysis takes the 15 kg cubesat from the lunar back to the Earth orbit in under three years assuming a 2 km long tether and 20 kV. The results of this paper are used to set scientific requirements for the conceptional ESTCube lunar nanospacecraft mission design to be published subsequently in the Special Issue “Advances in CubeSat Sails and Tethers”.\",\"PeriodicalId\":50845,\"journal\":{\"name\":\"Aerospace America\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace America\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace10080694\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace America","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace10080694","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

电动太阳风帆(E-sail)是一种新颖的深空推进概念,尚未在太空中得到验证。虽然太阳风是电帆的真实运行环境,但它的基本原理可以在电离层中得到证明,在电离层中,电子帆可以用作脱离轨道的等离子制动器。将于2023年发射的两项任务,即Foresail-1p和ESTCube-2,将尝试在近地轨道上演示库仑阻力推进(电子帆和等离子制动的总称)。本文介绍了将E-sail带到深空的下一步工作,并提供了在太阳风中演示E-sail的初步建模和轨迹分析。初步分析假设一个6单元的立方体卫星被插入月球轨道,在那里它部署了几百米的E-sail系绳,并以10-20千伏的电压给系绳充电。由于太阳风粒子被带电系绳周围的静电护套偏转,航天器将经历加速。本文提出了两个新概念:一种新型任务设计工具——电帆任务加速器(ESME)的软件体系结构,以及月球轨道初始电帆实验设计。我们的太阳风模拟将带有电子帆系绳的电帆测试立方体(ESTCube)月球立方体放置在平均太阳风条件下,我们估计在充电至20千伏的2公里系绳上的库仑阻力产生的力为1.51e - 4 N。我们的轨道分析可以让这个重达15公斤的立方体在三年内从月球回到地球轨道,假设缆绳长度为2公里,电压为20千伏。本文的研究结果将用于为ESTCube月球纳米航天器的概念设计设定科学要求,该设计将随后发表在《立方体卫星帆和系索的进展》特刊上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electric Sail Mission Expeditor, ESME: Software Architecture and Initial ESTCube Lunar Cubesat E-Sail Experiment Design
The electric solar wind sail, or E-sail, is a novel deep space propulsion concept which has not been demonstrated in space yet. While the solar wind is the authentic operational environment of the electric sail, its fundamentals can be demonstrated in the ionosphere where the E-sail can be used as a plasma brake for deorbiting. Two missions to be launched in 2023, Foresail-1p and ESTCube-2, will attempt to demonstrate Coulomb drag propulsion (an umbrella term for the E-sail and plasma brake) in low Earth orbit. This paper presents the next step of bringing the E-sail to deep space—we provide the initial modelling and trajectory analysis of demonstrating the E-sail in solar wind. The preliminary analysis assumes a six-unit cubesat being inserted in the lunar orbit where it deploys several hundred meters of the E-sail tether and charges the tether at 10–20 kV. The spacecraft will experience acceleration due to the solar wind particles being deflected by the electrostatic sheath around the charged tether. The paper includes two new concepts: the software architecture of a new mission design tool, the Electric Sail Mission Expeditor (ESME), and the initial E-sail experiment design for the lunar orbit. Our solar-wind simulation places the Electric Sail Test Cube (ESTCube) lunar cubesat with the E-sail tether in average solar wind conditions and we estimate a force of 1.51e−4 N produced by the Coulomb drag on a 2 km tether charged to 20 kV. Our trajectory analysis takes the 15 kg cubesat from the lunar back to the Earth orbit in under three years assuming a 2 km long tether and 20 kV. The results of this paper are used to set scientific requirements for the conceptional ESTCube lunar nanospacecraft mission design to be published subsequently in the Special Issue “Advances in CubeSat Sails and Tethers”.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace America
Aerospace America 工程技术-工程:宇航
自引率
0.00%
发文量
9
审稿时长
4-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信