{"title":"膨胀土中植物根系部分排水的隆升行为","authors":"Jun Zhu, A. Leung, Yu Wang","doi":"10.1139/cgj-2023-0104","DOIUrl":null,"url":null,"abstract":"A large volume of research reporting the pull-out behaviour of root systems is available, but no study has considered the effects of soil drainage. This work implemented a modified three-dimensional embedded beam element model in a finite element platform that solved model equations by using a fully hydromechanically coupled algorithm. The model was validated against published centrifuge pull-out tests on root analogues, and the validated model was then applied to study parametrically the influence of the ratio of uplift rate to soil hydraulic conductivity on pull-out behaviour. The results demonstrated that the model can well capture the prepeak behaviour of the root systems up to the peak pull-out resistance. The generation of negative pore-water pressure (p_ex) owing to soil dilation upon root–soil interfacial shearing was the major reason for increased pull-out resistances under partially drained conditions. Compared with other root systems, root systems with smaller branch angles and deeper branch depths mobilised considerably more significant plastic deviatoric strains in the soil in their vicinity, generating more negative p_ex. Hyperbolic dimensionless backbone curves were derived to explain the transitional pull-out behaviours of root systems of different geometries under drainage conditions that ranged from fully drained to undrained.","PeriodicalId":9382,"journal":{"name":"Canadian Geotechnical Journal","volume":"4 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partially drained uplift behaviour of plant roots in dilative soils\",\"authors\":\"Jun Zhu, A. Leung, Yu Wang\",\"doi\":\"10.1139/cgj-2023-0104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large volume of research reporting the pull-out behaviour of root systems is available, but no study has considered the effects of soil drainage. This work implemented a modified three-dimensional embedded beam element model in a finite element platform that solved model equations by using a fully hydromechanically coupled algorithm. The model was validated against published centrifuge pull-out tests on root analogues, and the validated model was then applied to study parametrically the influence of the ratio of uplift rate to soil hydraulic conductivity on pull-out behaviour. The results demonstrated that the model can well capture the prepeak behaviour of the root systems up to the peak pull-out resistance. The generation of negative pore-water pressure (p_ex) owing to soil dilation upon root–soil interfacial shearing was the major reason for increased pull-out resistances under partially drained conditions. Compared with other root systems, root systems with smaller branch angles and deeper branch depths mobilised considerably more significant plastic deviatoric strains in the soil in their vicinity, generating more negative p_ex. Hyperbolic dimensionless backbone curves were derived to explain the transitional pull-out behaviours of root systems of different geometries under drainage conditions that ranged from fully drained to undrained.\",\"PeriodicalId\":9382,\"journal\":{\"name\":\"Canadian Geotechnical Journal\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Geotechnical Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1139/cgj-2023-0104\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Geotechnical Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/cgj-2023-0104","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Partially drained uplift behaviour of plant roots in dilative soils
A large volume of research reporting the pull-out behaviour of root systems is available, but no study has considered the effects of soil drainage. This work implemented a modified three-dimensional embedded beam element model in a finite element platform that solved model equations by using a fully hydromechanically coupled algorithm. The model was validated against published centrifuge pull-out tests on root analogues, and the validated model was then applied to study parametrically the influence of the ratio of uplift rate to soil hydraulic conductivity on pull-out behaviour. The results demonstrated that the model can well capture the prepeak behaviour of the root systems up to the peak pull-out resistance. The generation of negative pore-water pressure (p_ex) owing to soil dilation upon root–soil interfacial shearing was the major reason for increased pull-out resistances under partially drained conditions. Compared with other root systems, root systems with smaller branch angles and deeper branch depths mobilised considerably more significant plastic deviatoric strains in the soil in their vicinity, generating more negative p_ex. Hyperbolic dimensionless backbone curves were derived to explain the transitional pull-out behaviours of root systems of different geometries under drainage conditions that ranged from fully drained to undrained.
期刊介绍:
The Canadian Geotechnical Journal features articles, notes, reviews, and discussions related to new developments in geotechnical and geoenvironmental engineering, and applied sciences. The topics of papers written by researchers and engineers/scientists active in industry include soil and rock mechanics, material properties and fundamental behaviour, site characterization, foundations, excavations, tunnels, dams and embankments, slopes, landslides, geological and rock engineering, ground improvement, hydrogeology and contaminant hydrogeology, geochemistry, waste management, geosynthetics, offshore engineering, ice, frozen ground and northern engineering, risk and reliability applications, and physical and numerical modelling.
Contributions that have practical relevance are preferred, including case records. Purely theoretical contributions are not generally published unless they are on a topic of special interest (like unsaturated soil mechanics or cold regions geotechnics) or they have direct practical value.