与四次曲线相交以提取其根

IF 0.1 Q4 MATHEMATICS
R. Kulkarni
{"title":"与四次曲线相交以提取其根","authors":"R. Kulkarni","doi":"10.1515/aupcsm-2017-0006","DOIUrl":null,"url":null,"abstract":"Abstract In this note we present a new method for determining the roots of a quartic polynomial, wherein the curve of the given quartic polynomial is intersected by the curve of a quadratic polynomial (which has two unknown coefficients) at its root point; so the root satisfies both the quartic and the quadratic equations. Elimination of the root term from the two equations leads to an expression in the two unknowns of quadratic polynomial. In addition, we introduce another expression in one unknown, which leads to determination of the two unknowns and subsequently the roots of quartic polynomial.","PeriodicalId":53863,"journal":{"name":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","volume":"10 1","pages":"73 - 76"},"PeriodicalIF":0.1000,"publicationDate":"2017-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intersect a quartic to extract its roots\",\"authors\":\"R. Kulkarni\",\"doi\":\"10.1515/aupcsm-2017-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this note we present a new method for determining the roots of a quartic polynomial, wherein the curve of the given quartic polynomial is intersected by the curve of a quadratic polynomial (which has two unknown coefficients) at its root point; so the root satisfies both the quartic and the quadratic equations. Elimination of the root term from the two equations leads to an expression in the two unknowns of quadratic polynomial. In addition, we introduce another expression in one unknown, which leads to determination of the two unknowns and subsequently the roots of quartic polynomial.\",\"PeriodicalId\":53863,\"journal\":{\"name\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"volume\":\"10 1\",\"pages\":\"73 - 76\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2017-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/aupcsm-2017-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/aupcsm-2017-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文给出了一种确定四次多项式根的新方法,其中给定的四次多项式的曲线与具有两个未知系数的二次多项式的曲线在其根点相交;所以根同时满足四次方程和二次方程。从两个方程中消去根项,得到二次多项式中两个未知数的表达式。此外,我们在一个未知数中引入另一个表达式,从而确定两个未知数并随后确定四次多项式的根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intersect a quartic to extract its roots
Abstract In this note we present a new method for determining the roots of a quartic polynomial, wherein the curve of the given quartic polynomial is intersected by the curve of a quadratic polynomial (which has two unknown coefficients) at its root point; so the root satisfies both the quartic and the quadratic equations. Elimination of the root term from the two equations leads to an expression in the two unknowns of quadratic polynomial. In addition, we introduce another expression in one unknown, which leads to determination of the two unknowns and subsequently the roots of quartic polynomial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.10%
发文量
5
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信