可交换弱零净群环

Pub Date : 2019-12-01 DOI:10.2478/ausm-2019-0020
P. Danchev
{"title":"可交换弱零净群环","authors":"P. Danchev","doi":"10.2478/ausm-2019-0020","DOIUrl":null,"url":null,"abstract":"Abstract An arbitrary unital ring R is called feebly nil-clean if any its element is of the form q + e − f, where q is a nilpotent and e, f are idempotents with ef = fe. For any commutative ring R and any abelian group G, we find a necessary and sufficient condition when the group ring R(G) is feebly nil-clean only in terms of R, G and their sections. Our result refines establishments due to McGovern et al. in J. Algebra Appl. (2015) on nil-clean rings and Danchev-McGovern in J. Algebra (2015) on weakly nil-clean rings, respectively.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Commutative feebly nil-clean group rings\",\"authors\":\"P. Danchev\",\"doi\":\"10.2478/ausm-2019-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract An arbitrary unital ring R is called feebly nil-clean if any its element is of the form q + e − f, where q is a nilpotent and e, f are idempotents with ef = fe. For any commutative ring R and any abelian group G, we find a necessary and sufficient condition when the group ring R(G) is feebly nil-clean only in terms of R, G and their sections. Our result refines establishments due to McGovern et al. in J. Algebra Appl. (2015) on nil-clean rings and Danchev-McGovern in J. Algebra (2015) on weakly nil-clean rings, respectively.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2019-0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2019-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要任意一元环R,如果它的任何元素是q + e−f的形式,则称为弱零干净环,其中q是幂零的,e, f是幂等的,且f = fe。对于任意交换环R和任意阿贝尔群G,我们得到了群环R(G)仅在R、G及其截面上是弱零清洁的一个充分必要条件。我们的结果改进了McGovern等人在J. Algebra应用中建立的机构。代数(2015)在弱零干净环上的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Commutative feebly nil-clean group rings
Abstract An arbitrary unital ring R is called feebly nil-clean if any its element is of the form q + e − f, where q is a nilpotent and e, f are idempotents with ef = fe. For any commutative ring R and any abelian group G, we find a necessary and sufficient condition when the group ring R(G) is feebly nil-clean only in terms of R, G and their sections. Our result refines establishments due to McGovern et al. in J. Algebra Appl. (2015) on nil-clean rings and Danchev-McGovern in J. Algebra (2015) on weakly nil-clean rings, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信