{"title":"二维双障碍问题的爆破分析","authors":"G. Aleksanyan","doi":"10.4171/IFB/419","DOIUrl":null,"url":null,"abstract":"In this article we study a normalised double obstacle problem with polynomial obstacles $ p^1\\leq p^2$ under the assumption that $ p^1(x)=p^2(x)$ iff $ x=0$. In dimension two we give a complete characterisation of blow-up solutions depending on the coefficients of the polynomials $p^1, p^2$. In particular, we see that there exists a new type of blow-ups, that we call double-cone solutions since the coincidence sets $\\{u=p^1\\}$ and $\\{u=p^2\\}$ are cones with a common vertex. We prove the uniqueness of blow-up limits, and analyse the regularity of the free boundary in dimension two. In particular we show that if the solution to the double obstacle problem has a double-cone blow-up limit at the origin, then locally the free boundary consists of four $C^{1,\\gamma}$-curves, meeting at the origin. In the end we give an example of a three-dimensional double-cone solution.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Analysis of blow-ups for the double obstacle problem in dimension two\",\"authors\":\"G. Aleksanyan\",\"doi\":\"10.4171/IFB/419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we study a normalised double obstacle problem with polynomial obstacles $ p^1\\\\leq p^2$ under the assumption that $ p^1(x)=p^2(x)$ iff $ x=0$. In dimension two we give a complete characterisation of blow-up solutions depending on the coefficients of the polynomials $p^1, p^2$. In particular, we see that there exists a new type of blow-ups, that we call double-cone solutions since the coincidence sets $\\\\{u=p^1\\\\}$ and $\\\\{u=p^2\\\\}$ are cones with a common vertex. We prove the uniqueness of blow-up limits, and analyse the regularity of the free boundary in dimension two. In particular we show that if the solution to the double obstacle problem has a double-cone blow-up limit at the origin, then locally the free boundary consists of four $C^{1,\\\\gamma}$-curves, meeting at the origin. In the end we give an example of a three-dimensional double-cone solution.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2017-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/IFB/419\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/IFB/419","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis of blow-ups for the double obstacle problem in dimension two
In this article we study a normalised double obstacle problem with polynomial obstacles $ p^1\leq p^2$ under the assumption that $ p^1(x)=p^2(x)$ iff $ x=0$. In dimension two we give a complete characterisation of blow-up solutions depending on the coefficients of the polynomials $p^1, p^2$. In particular, we see that there exists a new type of blow-ups, that we call double-cone solutions since the coincidence sets $\{u=p^1\}$ and $\{u=p^2\}$ are cones with a common vertex. We prove the uniqueness of blow-up limits, and analyse the regularity of the free boundary in dimension two. In particular we show that if the solution to the double obstacle problem has a double-cone blow-up limit at the origin, then locally the free boundary consists of four $C^{1,\gamma}$-curves, meeting at the origin. In the end we give an example of a three-dimensional double-cone solution.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.