观察引导系统还原详细的人心室细胞模型

T. Gerach, D. Weiß, O. Dössel, A. Loewe
{"title":"观察引导系统还原详细的人心室细胞模型","authors":"T. Gerach, D. Weiß, O. Dössel, A. Loewe","doi":"10.23919/CinC49843.2019.9005729","DOIUrl":null,"url":null,"abstract":"In silico studies are often used to analyze mechanisms of cardiac arrhythmias. The electrophysiological cell models that are used to simulate the membrane potential in these studies range from highly detailed physiological models to simplistic phenomenological models.To effectively cover the middle ground between those cell models, we utilize the manifold boundary approximation method (MBAM) to systematically reduce the widely used O’Hara-Rudy ventricular cell model (ORd) and investigate the influence of parametrization of the model as well as different strategies of choosing input quantities, further called quantities of interest (QoI).As a result of the reduction process, we present three reduced model variants of the ORd model that only contain a fraction of the original model’s ionic currents resulting in a twofold speedup in computation times compared to the original model. We find that the reduced models show similar action potential duration restitution and repolarization rates. Additionally, we are able to initialize and observe stable spiral wave dynamics on a 3D tissue patch for 2 out of the 3 reduced models.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"5 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Observation Guided Systematic Reduction of a Detailed Human Ventricular Cell Model\",\"authors\":\"T. Gerach, D. Weiß, O. Dössel, A. Loewe\",\"doi\":\"10.23919/CinC49843.2019.9005729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In silico studies are often used to analyze mechanisms of cardiac arrhythmias. The electrophysiological cell models that are used to simulate the membrane potential in these studies range from highly detailed physiological models to simplistic phenomenological models.To effectively cover the middle ground between those cell models, we utilize the manifold boundary approximation method (MBAM) to systematically reduce the widely used O’Hara-Rudy ventricular cell model (ORd) and investigate the influence of parametrization of the model as well as different strategies of choosing input quantities, further called quantities of interest (QoI).As a result of the reduction process, we present three reduced model variants of the ORd model that only contain a fraction of the original model’s ionic currents resulting in a twofold speedup in computation times compared to the original model. We find that the reduced models show similar action potential duration restitution and repolarization rates. Additionally, we are able to initialize and observe stable spiral wave dynamics on a 3D tissue patch for 2 out of the 3 reduced models.\",\"PeriodicalId\":6697,\"journal\":{\"name\":\"2019 Computing in Cardiology (CinC)\",\"volume\":\"5 1\",\"pages\":\"Page 1-Page 4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CinC49843.2019.9005729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CinC49843.2019.9005729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

计算机研究常用于分析心律失常的机制。在这些研究中,用于模拟膜电位的电生理细胞模型从非常详细的生理模型到简单的现象学模型不等。为了有效地覆盖这些细胞模型之间的中间地带,我们利用流形边界近似方法(MBAM)系统地简化了广泛使用的O 'Hara-Rudy心室细胞模型(ORd),并研究了模型参数化的影响以及选择输入量的不同策略,进一步称为兴趣量(qi)。作为还原过程的结果,我们提出了ORd模型的三个简化模型变体,它们只包含原始模型的一小部分离子电流,导致计算时间比原始模型加快两倍。我们发现简化后的模型具有相似的动作电位持续时间、恢复和复极化率。此外,我们能够初始化和观察稳定的螺旋波动力学在一个3D组织贴片3个减少模型中的2个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Observation Guided Systematic Reduction of a Detailed Human Ventricular Cell Model
In silico studies are often used to analyze mechanisms of cardiac arrhythmias. The electrophysiological cell models that are used to simulate the membrane potential in these studies range from highly detailed physiological models to simplistic phenomenological models.To effectively cover the middle ground between those cell models, we utilize the manifold boundary approximation method (MBAM) to systematically reduce the widely used O’Hara-Rudy ventricular cell model (ORd) and investigate the influence of parametrization of the model as well as different strategies of choosing input quantities, further called quantities of interest (QoI).As a result of the reduction process, we present three reduced model variants of the ORd model that only contain a fraction of the original model’s ionic currents resulting in a twofold speedup in computation times compared to the original model. We find that the reduced models show similar action potential duration restitution and repolarization rates. Additionally, we are able to initialize and observe stable spiral wave dynamics on a 3D tissue patch for 2 out of the 3 reduced models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信