离散Hammerstein系统的傅里叶级数回归估计辨识

A. Krzyżak
{"title":"离散Hammerstein系统的傅里叶级数回归估计辨识","authors":"A. Krzyżak","doi":"10.23919/ACC.1988.4789925","DOIUrl":null,"url":null,"abstract":"We study the identification of single-input, single-output discrete Hammerstein system. We identify the parameters of the dynamic, linear subsystem by the correlation and Newton-Gauss method. The main results concern the identification of the nonlinear, memoryless subsystem. We impose no conditions on the functional form of the nonlinear subsystem, recovering the nonlinearity using the Fourier series regression estimate. We prove the density-free pointwise convergence of the estimate. The rates of pointwise convergence are obtained for smooth input densities and for nonlinearities of Lipschitz type.","PeriodicalId":6395,"journal":{"name":"1988 American Control Conference","volume":"93 1","pages":"1321-1324"},"PeriodicalIF":0.0000,"publicationDate":"1988-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"On Identification of Discrete Hammerstein Systems by the Fourier Series Regression Estimate\",\"authors\":\"A. Krzyżak\",\"doi\":\"10.23919/ACC.1988.4789925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the identification of single-input, single-output discrete Hammerstein system. We identify the parameters of the dynamic, linear subsystem by the correlation and Newton-Gauss method. The main results concern the identification of the nonlinear, memoryless subsystem. We impose no conditions on the functional form of the nonlinear subsystem, recovering the nonlinearity using the Fourier series regression estimate. We prove the density-free pointwise convergence of the estimate. The rates of pointwise convergence are obtained for smooth input densities and for nonlinearities of Lipschitz type.\",\"PeriodicalId\":6395,\"journal\":{\"name\":\"1988 American Control Conference\",\"volume\":\"93 1\",\"pages\":\"1321-1324\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1988 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.1988.4789925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1988 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1988.4789925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

研究了单输入、单输出离散Hammerstein系统的辨识问题。利用相关法和牛顿-高斯法确定了动态线性子系统的参数。主要研究结果涉及非线性无记忆子系统的辨识。我们对非线性子系统的函数形式不加任何条件,使用傅立叶级数回归估计恢复非线性。我们证明了估计的无密度点收敛性。得到了光滑输入密度和非线性Lipschitz型的点向收敛速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Identification of Discrete Hammerstein Systems by the Fourier Series Regression Estimate
We study the identification of single-input, single-output discrete Hammerstein system. We identify the parameters of the dynamic, linear subsystem by the correlation and Newton-Gauss method. The main results concern the identification of the nonlinear, memoryless subsystem. We impose no conditions on the functional form of the nonlinear subsystem, recovering the nonlinearity using the Fourier series regression estimate. We prove the density-free pointwise convergence of the estimate. The rates of pointwise convergence are obtained for smooth input densities and for nonlinearities of Lipschitz type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信