N = 28同色:向缺质子侧的形状共存

IF 0.2 Q4 PHYSICS, MULTIDISCIPLINARY
G. Saxena , M. Kaushik
{"title":"N = 28同色:向缺质子侧的形状共存","authors":"G. Saxena ,&nbsp;M. Kaushik","doi":"10.1016/j.spjpm.2017.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>We have employed RMF+BCS (relativistic mean-field and Bardeen-Cooper-Schrieffer) approach to study the phenomenon of shape coexistence in <em>N</em> = 28 isotones towards the proton-deficient side. Our present investigations include single particle energies, deformations, binding energies as well as excitation energies. It is found that towards the proton-deficient side, <em>N</em> = 28 shell closure disappears due to reduced gap between neutron 1f<sub>7/2</sub> and 1f<sub>5/2</sub> and the nuclei <sup>40</sup>Mg, <sup>42</sup>Si, and <sup>44</sup>S are found to possess shape coexistence giving further support to weakening of the shell gap. These results are found in excellent match with other theoretical and experimental studies and are fortified with a variety of calculations and parameters.</p></div>","PeriodicalId":41808,"journal":{"name":"St Petersburg Polytechnic University Journal-Physics and Mathematics","volume":"3 4","pages":"Pages 359-364"},"PeriodicalIF":0.2000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.spjpm.2017.10.002","citationCount":"1","resultStr":"{\"title\":\"N = 28 isotones: Shape coexistence towards proton-deficient side\",\"authors\":\"G. Saxena ,&nbsp;M. Kaushik\",\"doi\":\"10.1016/j.spjpm.2017.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We have employed RMF+BCS (relativistic mean-field and Bardeen-Cooper-Schrieffer) approach to study the phenomenon of shape coexistence in <em>N</em> = 28 isotones towards the proton-deficient side. Our present investigations include single particle energies, deformations, binding energies as well as excitation energies. It is found that towards the proton-deficient side, <em>N</em> = 28 shell closure disappears due to reduced gap between neutron 1f<sub>7/2</sub> and 1f<sub>5/2</sub> and the nuclei <sup>40</sup>Mg, <sup>42</sup>Si, and <sup>44</sup>S are found to possess shape coexistence giving further support to weakening of the shell gap. These results are found in excellent match with other theoretical and experimental studies and are fortified with a variety of calculations and parameters.</p></div>\",\"PeriodicalId\":41808,\"journal\":{\"name\":\"St Petersburg Polytechnic University Journal-Physics and Mathematics\",\"volume\":\"3 4\",\"pages\":\"Pages 359-364\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.spjpm.2017.10.002\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Polytechnic University Journal-Physics and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S240572231630127X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Polytechnic University Journal-Physics and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240572231630127X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

我们采用RMF+BCS(相对论平均场和bardeen - coopero - schrieffer)方法研究了N = 28同色子在缺质子侧的形状共存现象。我们目前的研究包括单粒子能量、变形、结合能和激发能。在缺质子侧,由于中子1f7/2和1f5/2之间的间隙减小,N = 28的壳层闭合消失,40Mg、42Si和44S原子核具有形状共存,进一步支持了壳层间隙减弱的理论。这些结果与其他理论和实验研究结果非常吻合,并通过各种计算和参数得到了加强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
N = 28 isotones: Shape coexistence towards proton-deficient side

We have employed RMF+BCS (relativistic mean-field and Bardeen-Cooper-Schrieffer) approach to study the phenomenon of shape coexistence in N = 28 isotones towards the proton-deficient side. Our present investigations include single particle energies, deformations, binding energies as well as excitation energies. It is found that towards the proton-deficient side, N = 28 shell closure disappears due to reduced gap between neutron 1f7/2 and 1f5/2 and the nuclei 40Mg, 42Si, and 44S are found to possess shape coexistence giving further support to weakening of the shell gap. These results are found in excellent match with other theoretical and experimental studies and are fortified with a variety of calculations and parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信