保序Wasserstein判别分析

Bing Su, Jiahuan Zhou, Ying Wu
{"title":"保序Wasserstein判别分析","authors":"Bing Su, Jiahuan Zhou, Ying Wu","doi":"10.1109/ICCV.2019.00998","DOIUrl":null,"url":null,"abstract":"Supervised dimensionality reduction for sequence data projects the observations in sequences onto a low-dimensional subspace to better separate different sequence classes. It is typically more challenging than conventional dimensionality reduction for static data, because measuring the separability of sequences involves non-linear procedures to manipulate the temporal structures. This paper presents a linear method, namely Order-preserving Wasserstein Discriminant Analysis (OWDA), which learns the projection by maximizing the inter-class distance and minimizing the intra-class scatter. For each class, OWDA extracts the order-preserving Wasserstein barycenter and constructs the intra-class scatter as the dispersion of the training sequences around the barycenter. The inter-class distance is measured as the order-preserving Wasserstein distance between the corresponding barycenters. OWDA is able to concentrate on the distinctive differences among classes by lifting the geometric relations with temporal constraints. Experiments show that OWDA achieves competitive results on three 3D action recognition datasets.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"39 1","pages":"9884-9893"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Order-Preserving Wasserstein Discriminant Analysis\",\"authors\":\"Bing Su, Jiahuan Zhou, Ying Wu\",\"doi\":\"10.1109/ICCV.2019.00998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supervised dimensionality reduction for sequence data projects the observations in sequences onto a low-dimensional subspace to better separate different sequence classes. It is typically more challenging than conventional dimensionality reduction for static data, because measuring the separability of sequences involves non-linear procedures to manipulate the temporal structures. This paper presents a linear method, namely Order-preserving Wasserstein Discriminant Analysis (OWDA), which learns the projection by maximizing the inter-class distance and minimizing the intra-class scatter. For each class, OWDA extracts the order-preserving Wasserstein barycenter and constructs the intra-class scatter as the dispersion of the training sequences around the barycenter. The inter-class distance is measured as the order-preserving Wasserstein distance between the corresponding barycenters. OWDA is able to concentrate on the distinctive differences among classes by lifting the geometric relations with temporal constraints. Experiments show that OWDA achieves competitive results on three 3D action recognition datasets.\",\"PeriodicalId\":6728,\"journal\":{\"name\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"39 1\",\"pages\":\"9884-9893\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2019.00998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

序列数据的监督降维将序列中的观测值投影到低维子空间上,以更好地分离不同的序列类。它通常比传统的静态数据降维更具挑战性,因为测量序列的可分性涉及非线性过程来操纵时间结构。本文提出了一种线性方法,即保序Wasserstein判别分析(OWDA),该方法通过最大化类间距离和最小化类内散点来学习投影。对于每个类,OWDA提取保序Wasserstein质心,并构造类内散点作为训练序列在质心周围的离散度。类间距离用相应质心之间的保序瓦瑟斯坦距离来测量。通过提升具有时间约束的几何关系,OWDA能够专注于类之间的显著差异。实验表明,该方法在三种三维动作识别数据集上取得了较好的识别效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Order-Preserving Wasserstein Discriminant Analysis
Supervised dimensionality reduction for sequence data projects the observations in sequences onto a low-dimensional subspace to better separate different sequence classes. It is typically more challenging than conventional dimensionality reduction for static data, because measuring the separability of sequences involves non-linear procedures to manipulate the temporal structures. This paper presents a linear method, namely Order-preserving Wasserstein Discriminant Analysis (OWDA), which learns the projection by maximizing the inter-class distance and minimizing the intra-class scatter. For each class, OWDA extracts the order-preserving Wasserstein barycenter and constructs the intra-class scatter as the dispersion of the training sequences around the barycenter. The inter-class distance is measured as the order-preserving Wasserstein distance between the corresponding barycenters. OWDA is able to concentrate on the distinctive differences among classes by lifting the geometric relations with temporal constraints. Experiments show that OWDA achieves competitive results on three 3D action recognition datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信