自然图像相关性的新二元统计模型

Che-Chun Su, L. Cormack, A. Bovik
{"title":"自然图像相关性的新二元统计模型","authors":"Che-Chun Su, L. Cormack, A. Bovik","doi":"10.1109/ICASSP.2014.6854627","DOIUrl":null,"url":null,"abstract":"We perform bivariate statistical analysis and modeling of the joint distributions of spatially adjacent sub-band responses for both luminance/chrominance and range data in natural scenes. In particular, we introduce a multivariate generalized Gaussian distribution and an exponentiated sine function to model the underlying statistics and correlations. The experimental results show that the bivariate statistics relating spatially adjacent pixels in both 2D color images and range maps are well described by the proposed models. We validate the robustness of the proposed bivariate models using a multi-variate statistical hypothesis test, and further demonstrate their effectiveness with application to a prototype depth estimation algorithm.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"70 8 1","pages":"5362-5366"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"New bivariate statistical model of natural image correlations\",\"authors\":\"Che-Chun Su, L. Cormack, A. Bovik\",\"doi\":\"10.1109/ICASSP.2014.6854627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We perform bivariate statistical analysis and modeling of the joint distributions of spatially adjacent sub-band responses for both luminance/chrominance and range data in natural scenes. In particular, we introduce a multivariate generalized Gaussian distribution and an exponentiated sine function to model the underlying statistics and correlations. The experimental results show that the bivariate statistics relating spatially adjacent pixels in both 2D color images and range maps are well described by the proposed models. We validate the robustness of the proposed bivariate models using a multi-variate statistical hypothesis test, and further demonstrate their effectiveness with application to a prototype depth estimation algorithm.\",\"PeriodicalId\":6545,\"journal\":{\"name\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"70 8 1\",\"pages\":\"5362-5366\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2014.6854627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们对自然场景中亮度/色度和距离数据的空间相邻子带响应联合分布进行了二元统计分析和建模。特别地,我们引入了一个多元广义高斯分布和一个指数正弦函数来模拟潜在的统计和相关性。实验结果表明,该模型能够很好地描述二维彩色图像和距离图中空间相邻像素的二元统计量。我们使用多变量统计假设检验验证了所提出的二元模型的鲁棒性,并通过应用于原型深度估计算法进一步证明了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New bivariate statistical model of natural image correlations
We perform bivariate statistical analysis and modeling of the joint distributions of spatially adjacent sub-band responses for both luminance/chrominance and range data in natural scenes. In particular, we introduce a multivariate generalized Gaussian distribution and an exponentiated sine function to model the underlying statistics and correlations. The experimental results show that the bivariate statistics relating spatially adjacent pixels in both 2D color images and range maps are well described by the proposed models. We validate the robustness of the proposed bivariate models using a multi-variate statistical hypothesis test, and further demonstrate their effectiveness with application to a prototype depth estimation algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信