{"title":"单模多项式超平坦序列的Saffari近正交猜想的证明","authors":"Tamás Erdélyi","doi":"10.1016/S0764-4442(01)02116-4","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mtext>P</mtext><msub><mi></mi><mn>n</mn></msub><mtext>(z)=∑</mtext><msub><mi></mi><mn>k=0</mn></msub><msup><mi></mi><mn>n</mn></msup><mtext>a</mtext><msub><mi></mi><mn>k,n</mn></msub><mtext>z</mtext><msup><mi></mi><mn>k</mn></msup><mtext>∈</mtext><mtext>C</mtext><mspace></mspace><mtext>[z]</mtext></math></span> be a sequence of unimodular polynomials (|<em>a</em><sub><em>k</em>,<em>n</em></sub>|=1 for all <em>k</em>, <em>n</em>) which is ultraflat in the sense of Kahane, i.e., <span><span><span><math><mtext>lim</mtext><mtext>n→∞</mtext><mspace></mspace><mtext>max</mtext><mtext>|z|=1</mtext><mtext>|(n+1)</mtext><msup><mi></mi><mn>−1/2</mn></msup><mtext>|P</mtext><msub><mi></mi><mn>n</mn></msub><mtext>(z)|−1|=0.</mtext></math></span></span></span> We prove the following conjecture of Saffari (1991): ∑<sub><em>k</em>=0</sub><sup><em>n</em></sup><em>a</em><sub><em>k</em>,<em>n</em></sub><em>a</em><sub><em>n</em>−<em>k</em>,<em>n</em></sub>=o(<em>n</em>) as <em>n</em>→∞, that is, the polynomial <em>P</em><sub><em>n</em></sub>(<em>z</em>) and its “conjugate reciprocal” <span><math><mtext>P</mtext><msub><mi></mi><mn>n</mn></msub><msup><mi></mi><mn>∗</mn></msup><mtext>(z)=∑</mtext><msub><mi></mi><mn>k=0</mn></msub><msup><mi></mi><mn>n</mn></msup><mtext>a</mtext><msub><mi></mi><mn>n−k,n</mn></msub><mtext>z</mtext><msup><mi></mi><mn>k</mn></msup></math></span> become “nearly orthogonal” as <em>n</em>→∞. To this end we use results from [3] where (as well as in [5]) we studied the structure of ultraflat polynomials and proved several conjectures of Saffari.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 7","pages":"Pages 623-628"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02116-4","citationCount":"8","resultStr":"{\"title\":\"Proof of Saffari's near-orthogonality conjecture for ultraflat sequences of unimodular polynomials\",\"authors\":\"Tamás Erdélyi\",\"doi\":\"10.1016/S0764-4442(01)02116-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mtext>P</mtext><msub><mi></mi><mn>n</mn></msub><mtext>(z)=∑</mtext><msub><mi></mi><mn>k=0</mn></msub><msup><mi></mi><mn>n</mn></msup><mtext>a</mtext><msub><mi></mi><mn>k,n</mn></msub><mtext>z</mtext><msup><mi></mi><mn>k</mn></msup><mtext>∈</mtext><mtext>C</mtext><mspace></mspace><mtext>[z]</mtext></math></span> be a sequence of unimodular polynomials (|<em>a</em><sub><em>k</em>,<em>n</em></sub>|=1 for all <em>k</em>, <em>n</em>) which is ultraflat in the sense of Kahane, i.e., <span><span><span><math><mtext>lim</mtext><mtext>n→∞</mtext><mspace></mspace><mtext>max</mtext><mtext>|z|=1</mtext><mtext>|(n+1)</mtext><msup><mi></mi><mn>−1/2</mn></msup><mtext>|P</mtext><msub><mi></mi><mn>n</mn></msub><mtext>(z)|−1|=0.</mtext></math></span></span></span> We prove the following conjecture of Saffari (1991): ∑<sub><em>k</em>=0</sub><sup><em>n</em></sup><em>a</em><sub><em>k</em>,<em>n</em></sub><em>a</em><sub><em>n</em>−<em>k</em>,<em>n</em></sub>=o(<em>n</em>) as <em>n</em>→∞, that is, the polynomial <em>P</em><sub><em>n</em></sub>(<em>z</em>) and its “conjugate reciprocal” <span><math><mtext>P</mtext><msub><mi></mi><mn>n</mn></msub><msup><mi></mi><mn>∗</mn></msup><mtext>(z)=∑</mtext><msub><mi></mi><mn>k=0</mn></msub><msup><mi></mi><mn>n</mn></msup><mtext>a</mtext><msub><mi></mi><mn>n−k,n</mn></msub><mtext>z</mtext><msup><mi></mi><mn>k</mn></msup></math></span> become “nearly orthogonal” as <em>n</em>→∞. To this end we use results from [3] where (as well as in [5]) we studied the structure of ultraflat polynomials and proved several conjectures of Saffari.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 7\",\"pages\":\"Pages 623-628\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02116-4\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proof of Saffari's near-orthogonality conjecture for ultraflat sequences of unimodular polynomials
Let be a sequence of unimodular polynomials (|ak,n|=1 for all k, n) which is ultraflat in the sense of Kahane, i.e., We prove the following conjecture of Saffari (1991): ∑k=0nak,nan−k,n=o(n) as n→∞, that is, the polynomial Pn(z) and its “conjugate reciprocal” become “nearly orthogonal” as n→∞. To this end we use results from [3] where (as well as in [5]) we studied the structure of ultraflat polynomials and proved several conjectures of Saffari.