一种完全解耦的音叉(FDTF) MEMS振动陀螺仪的设计与实现,以提高其鲁棒性

F. Lee, K.-C Liang, E. Cheng, W. Fang
{"title":"一种完全解耦的音叉(FDTF) MEMS振动陀螺仪的设计与实现,以提高其鲁棒性","authors":"F. Lee, K.-C Liang, E. Cheng, W. Fang","doi":"10.1109/TRANSDUCERS.2015.7181134","DOIUrl":null,"url":null,"abstract":"This study demonstrates the structural design and implementation of a single-axis MEMS vibratory rate gyroscope for the robustness improvement. As in Fig.1, features of this study are: (1) the employment of the fully-decoupled mechanism minimizes the mechanical cross-coupling between the drive-mode and the sense-mode; (2) the tuning fork structure combined with differential sensing architecture increases the resistance against external vibrations; (3) a compact structural design consists of the structurally forced (by rigid lever mechanism) anti-phase sense-mode and the linear-coupled anti-phase drive-mode. Preliminary results show a reduced coupling signal of near 500°/s, and the vibration resistances along different directions are also investigated. Moreover, the angular rate sensitivity is 17.7μV/°/s, which can be further improved using a mode-matched operation.","PeriodicalId":6465,"journal":{"name":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Design and implementation of a fully-decoupled tuning fork (FDTF) MEMS vibratory gyroscope for robustness improvement\",\"authors\":\"F. Lee, K.-C Liang, E. Cheng, W. Fang\",\"doi\":\"10.1109/TRANSDUCERS.2015.7181134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study demonstrates the structural design and implementation of a single-axis MEMS vibratory rate gyroscope for the robustness improvement. As in Fig.1, features of this study are: (1) the employment of the fully-decoupled mechanism minimizes the mechanical cross-coupling between the drive-mode and the sense-mode; (2) the tuning fork structure combined with differential sensing architecture increases the resistance against external vibrations; (3) a compact structural design consists of the structurally forced (by rigid lever mechanism) anti-phase sense-mode and the linear-coupled anti-phase drive-mode. Preliminary results show a reduced coupling signal of near 500°/s, and the vibration resistances along different directions are also investigated. Moreover, the angular rate sensitivity is 17.7μV/°/s, which can be further improved using a mode-matched operation.\",\"PeriodicalId\":6465,\"journal\":{\"name\":\"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRANSDUCERS.2015.7181134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2015.7181134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本研究演示了单轴MEMS振动速率陀螺仪的结构设计和实现,以提高其鲁棒性。如图1所示,本研究的特点是:(1)采用完全解耦的机构,最大限度地减少了驱动模式和感知模式之间的机械交叉耦合;(2)音叉结构与差分传感结构相结合,增加了对外部振动的抵抗能力;(3)紧凑的结构设计由结构强制(刚性杠杆机构)反相位检测模式和线性耦合反相位驱动模式组成。初步结果表明,耦合信号在500°/s附近减小,并对不同方向的振动阻力进行了研究。角速率灵敏度为17.7μV/°/s,采用模式匹配操作可进一步提高角速率灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and implementation of a fully-decoupled tuning fork (FDTF) MEMS vibratory gyroscope for robustness improvement
This study demonstrates the structural design and implementation of a single-axis MEMS vibratory rate gyroscope for the robustness improvement. As in Fig.1, features of this study are: (1) the employment of the fully-decoupled mechanism minimizes the mechanical cross-coupling between the drive-mode and the sense-mode; (2) the tuning fork structure combined with differential sensing architecture increases the resistance against external vibrations; (3) a compact structural design consists of the structurally forced (by rigid lever mechanism) anti-phase sense-mode and the linear-coupled anti-phase drive-mode. Preliminary results show a reduced coupling signal of near 500°/s, and the vibration resistances along different directions are also investigated. Moreover, the angular rate sensitivity is 17.7μV/°/s, which can be further improved using a mode-matched operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信