{"title":"准周期阻尼系统的统计复杂性","authors":"Á. Fülöp","doi":"10.2478/ausi-2018-0012","DOIUrl":null,"url":null,"abstract":"Abstract We consider the concept of statistical complexity to write the quasiperiodical damped systems applying the snapshot attractors. This allows us to understand the behaviour of these dynamical systems by the probability distribution of the time series making a difference between the regular, random and structural complexity on finite measurements. We interpreted the statistical complexity on snapshot attractor and determined it on the quasiperiodical forced pendulum.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"27 1","pages":"241 - 256"},"PeriodicalIF":0.3000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical complexity of the quasiperiodical damped systems\",\"authors\":\"Á. Fülöp\",\"doi\":\"10.2478/ausi-2018-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the concept of statistical complexity to write the quasiperiodical damped systems applying the snapshot attractors. This allows us to understand the behaviour of these dynamical systems by the probability distribution of the time series making a difference between the regular, random and structural complexity on finite measurements. We interpreted the statistical complexity on snapshot attractor and determined it on the quasiperiodical forced pendulum.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"27 1\",\"pages\":\"241 - 256\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2018-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2018-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Statistical complexity of the quasiperiodical damped systems
Abstract We consider the concept of statistical complexity to write the quasiperiodical damped systems applying the snapshot attractors. This allows us to understand the behaviour of these dynamical systems by the probability distribution of the time series making a difference between the regular, random and structural complexity on finite measurements. We interpreted the statistical complexity on snapshot attractor and determined it on the quasiperiodical forced pendulum.