理想的空间

IF 0.6 Q3 MATHEMATICS
B. Mitra, Debojyoti Chowdhury
{"title":"理想的空间","authors":"B. Mitra, Debojyoti Chowdhury","doi":"10.4995/agt.2021.13608","DOIUrl":null,"url":null,"abstract":"<p>Let C<sub>∞ </sub>(X) denote the family of real-valued continuous functions which vanish at infinity in the sense that {x ∈ X : |f(x)| ≥ 1/n} is compact in X for all n ∈ N. It is not in general true that C<span style=\"vertical-align: sub;\">∞ </span>(X) is an ideal of C(X). We define those spaces X to be ideal space where C<span style=\"vertical-align: sub;\">∞ </span>(X) is an ideal of C(X). We have proved that nearly pseudocompact spaces are ideal spaces. For the converse, we introduced a property called “RCC” property and showed that an ideal space X is nearly pseudocompact if and only if X satisfies ”RCC” property. We further discussed some topological properties of ideal spaces.</p>","PeriodicalId":8046,"journal":{"name":"Applied general topology","volume":"17 1","pages":"79"},"PeriodicalIF":0.6000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Ideal spaces\",\"authors\":\"B. Mitra, Debojyoti Chowdhury\",\"doi\":\"10.4995/agt.2021.13608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let C<sub>∞ </sub>(X) denote the family of real-valued continuous functions which vanish at infinity in the sense that {x ∈ X : |f(x)| ≥ 1/n} is compact in X for all n ∈ N. It is not in general true that C<span style=\\\"vertical-align: sub;\\\">∞ </span>(X) is an ideal of C(X). We define those spaces X to be ideal space where C<span style=\\\"vertical-align: sub;\\\">∞ </span>(X) is an ideal of C(X). We have proved that nearly pseudocompact spaces are ideal spaces. For the converse, we introduced a property called “RCC” property and showed that an ideal space X is nearly pseudocompact if and only if X satisfies ”RCC” property. We further discussed some topological properties of ideal spaces.</p>\",\"PeriodicalId\":8046,\"journal\":{\"name\":\"Applied general topology\",\"volume\":\"17 1\",\"pages\":\"79\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied general topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/agt.2021.13608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied general topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/agt.2021.13608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

设C∞(X)表示在无穷远处消失的实值连续函数族,使得{X∈X: |f(X) |≥1/n}在X上紧致,对于所有n∈n, C∞(X)是C(X)的理想,一般不成立。我们定义这些空间X为理想空间,其中C∞(X)是C(X)的理想。我们证明了近伪紧空间是理想空间。相反,我们引入了“RCC”性质,并证明了理想空间X是近似伪紧的当且仅当X满足“RCC”性质。进一步讨论了理想空间的一些拓扑性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ideal spaces

Let C∞ (X) denote the family of real-valued continuous functions which vanish at infinity in the sense that {x ∈ X : |f(x)| ≥ 1/n} is compact in X for all n ∈ N. It is not in general true that C∞ (X) is an ideal of C(X). We define those spaces X to be ideal space where C∞ (X) is an ideal of C(X). We have proved that nearly pseudocompact spaces are ideal spaces. For the converse, we introduced a property called “RCC” property and showed that an ideal space X is nearly pseudocompact if and only if X satisfies ”RCC” property. We further discussed some topological properties of ideal spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
38
审稿时长
15 weeks
期刊介绍: The international journal Applied General Topology publishes only original research papers related to the interactions between General Topology and other mathematical disciplines as well as topological results with applications to other areas of Science, and the development of topological theories of sufficiently general relevance to allow for future applications. Submissions are strictly refereed. Contributions, which should be in English, can be sent either to the appropriate member of the Editorial Board or to one of the Editors-in-Chief. All papers are reviewed in Mathematical Reviews and Zentralblatt für Mathematik.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信