具有回溯步长的广义条件梯度方法的快速收敛速率

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
K. Kunisch, Daniel Walter
{"title":"具有回溯步长的广义条件梯度方法的快速收敛速率","authors":"K. Kunisch, Daniel Walter","doi":"10.3934/naco.2022026","DOIUrl":null,"url":null,"abstract":"A generalized conditional gradient method for minimizing the sum of two convex functions, one of them differentiable, is presented. This iterative method relies on two main ingredients: First, the minimization of a partially linearized objective functional to compute a descent direction and, second, a stepsize choice based on an Armijo-like condition to ensure sufficient descent in every iteration. We provide several convergence results. Under mild assumptions, the method generates sequences of iterates which converge, on subsequences, towards minimizers. Moreover, a sublinear rate of convergence for the objective functional values is derived. Second, we show that the method enjoys improved rates of convergence if the partially linearized problem fulfills certain growth estimates. Most notably these results do not require strong convexity of the objective functional. Numerical tests on a variety of challenging PDE-constrained optimization problems confirm the practical efficiency of the proposed algorithm.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On fast convergence rates for generalized conditional gradient methods with backtracking stepsize\",\"authors\":\"K. Kunisch, Daniel Walter\",\"doi\":\"10.3934/naco.2022026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A generalized conditional gradient method for minimizing the sum of two convex functions, one of them differentiable, is presented. This iterative method relies on two main ingredients: First, the minimization of a partially linearized objective functional to compute a descent direction and, second, a stepsize choice based on an Armijo-like condition to ensure sufficient descent in every iteration. We provide several convergence results. Under mild assumptions, the method generates sequences of iterates which converge, on subsequences, towards minimizers. Moreover, a sublinear rate of convergence for the objective functional values is derived. Second, we show that the method enjoys improved rates of convergence if the partially linearized problem fulfills certain growth estimates. Most notably these results do not require strong convexity of the objective functional. Numerical tests on a variety of challenging PDE-constrained optimization problems confirm the practical efficiency of the proposed algorithm.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/naco.2022026\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2022026","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

给出了一种求两个凸函数和最小化的广义条件梯度法,其中一个凸函数是可微的。这种迭代方法主要依靠两个要素:首先,最小化部分线性化的目标函数来计算下降方向;其次,基于armijo -类条件的步长选择,以确保每次迭代都有足够的下降。我们给出了几个收敛结果。在温和的假设下,该方法生成的迭代序列在子序列上收敛于最小值。此外,还推导出目标泛函值的次线性收敛速率。其次,我们证明了如果部分线性化问题满足一定的增长估计,该方法具有改进的收敛速度。最值得注意的是,这些结果不需要目标泛函的强凸性。对各种具有挑战性的pde约束优化问题进行了数值试验,验证了该算法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On fast convergence rates for generalized conditional gradient methods with backtracking stepsize
A generalized conditional gradient method for minimizing the sum of two convex functions, one of them differentiable, is presented. This iterative method relies on two main ingredients: First, the minimization of a partially linearized objective functional to compute a descent direction and, second, a stepsize choice based on an Armijo-like condition to ensure sufficient descent in every iteration. We provide several convergence results. Under mild assumptions, the method generates sequences of iterates which converge, on subsequences, towards minimizers. Moreover, a sublinear rate of convergence for the objective functional values is derived. Second, we show that the method enjoys improved rates of convergence if the partially linearized problem fulfills certain growth estimates. Most notably these results do not require strong convexity of the objective functional. Numerical tests on a variety of challenging PDE-constrained optimization problems confirm the practical efficiency of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信