包含正弦或余弦函数积的积分的精确值

Q4 Mathematics
Ratinan Boonklurb, Atiratch Laoharenoo
{"title":"包含正弦或余弦函数积的积分的精确值","authors":"Ratinan Boonklurb, Atiratch Laoharenoo","doi":"10.53733/235","DOIUrl":null,"url":null,"abstract":"By considering the number of all choices of signs $+$ and $-$ such that $\\pm \\alpha_1 \\pm \\alpha_2 \\pm \\alpha_3 \\cdots \\pm \\alpha_n = 0$ and the number of sign $-$ appeared therein, this paper can give the exact value of $\\int_{0}^{2\\pi} \\prod_{k=1}^{n} \\sin (\\alpha_k x) dx$. In addition, without using the Fourier transformation technique, we can also find the exact value of $\\int_{0}^{\\infty}\\frac{(\\cos\\alpha x - \\cos\\beta x)^p}{x^q} dx$. These two integrals are motivated by the work of Andrican and Bragdasar in 2021, Andria and Tomescu in 2002, and Borwein and Borwein in 2001, respectively.","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact value of integrals involving product of sine or cosine function\",\"authors\":\"Ratinan Boonklurb, Atiratch Laoharenoo\",\"doi\":\"10.53733/235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By considering the number of all choices of signs $+$ and $-$ such that $\\\\pm \\\\alpha_1 \\\\pm \\\\alpha_2 \\\\pm \\\\alpha_3 \\\\cdots \\\\pm \\\\alpha_n = 0$ and the number of sign $-$ appeared therein, this paper can give the exact value of $\\\\int_{0}^{2\\\\pi} \\\\prod_{k=1}^{n} \\\\sin (\\\\alpha_k x) dx$. In addition, without using the Fourier transformation technique, we can also find the exact value of $\\\\int_{0}^{\\\\infty}\\\\frac{(\\\\cos\\\\alpha x - \\\\cos\\\\beta x)^p}{x^q} dx$. These two integrals are motivated by the work of Andrican and Bragdasar in 2021, Andria and Tomescu in 2002, and Borwein and Borwein in 2001, respectively.\",\"PeriodicalId\":30137,\"journal\":{\"name\":\"New Zealand Journal of Mathematics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Zealand Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53733/235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

考虑所有选择的符号$+$和$-$的个数,其中$\pm \alpha_1 \pm \alpha_2 \pm \alpha_3 \cdots \pm \alpha_n = 0$和出现的符号$-$的个数,本文可以给出$\int_{0}^{2\pi} \prod_{k=1}^{n} \sin (\alpha_k x) dx$的准确值。另外,不使用傅里叶变换技术,也可以求出$\int_{0}^{\infty}\frac{(\cos\alpha x - \cos\beta x)^p}{x^q} dx$的准确值。这两个积分分别是由Andrican和Bragdasar(2021)、Andria和Tomescu(2002)以及Borwein和Borwein(2001)的工作推动的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact value of integrals involving product of sine or cosine function
By considering the number of all choices of signs $+$ and $-$ such that $\pm \alpha_1 \pm \alpha_2 \pm \alpha_3 \cdots \pm \alpha_n = 0$ and the number of sign $-$ appeared therein, this paper can give the exact value of $\int_{0}^{2\pi} \prod_{k=1}^{n} \sin (\alpha_k x) dx$. In addition, without using the Fourier transformation technique, we can also find the exact value of $\int_{0}^{\infty}\frac{(\cos\alpha x - \cos\beta x)^p}{x^q} dx$. These two integrals are motivated by the work of Andrican and Bragdasar in 2021, Andria and Tomescu in 2002, and Borwein and Borwein in 2001, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Zealand Journal of Mathematics
New Zealand Journal of Mathematics Mathematics-Algebra and Number Theory
CiteScore
1.10
自引率
0.00%
发文量
11
审稿时长
50 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信