从无人机图像中快速生成用于精准农业的平坦地区的地形数字类别

M. C. Pineda, C. Perdomo, R. Caballero, A. Valera, J. A. Martínez-Casasnovas, J. Viloria
{"title":"从无人机图像中快速生成用于精准农业的平坦地区的地形数字类别","authors":"M. C. Pineda, C. Perdomo, R. Caballero, A. Valera, J. A. Martínez-Casasnovas, J. Viloria","doi":"10.1017/S2040470017000322","DOIUrl":null,"url":null,"abstract":"Precision agriculture (PA) requires reasonably homogeneous areas for site-specific management. This work explores the applicability of digital terrain classes obtained from a digital elevation model derived from UAV-acquired images, to define management units in in a relative flat area of about 6 ha. Elevation, together with other terrain variables such as: slope degree, profile curvature, plan curvature, topographic wetness index, sediment transport index, were clustered using the Fuzzy Kohonen Clustering Network (FKCN). Four terrain classes were obtained. The result was compared with a map produced by a classification of soil properties previously interpolated by ordinary kriging. The results suggest that areas for site-specific management can be defined from terrain classes based on environmental covariates, saving time and cost in comparison with interpolation of soil variables.","PeriodicalId":7228,"journal":{"name":"Advances in Animal Biosciences","volume":"14 1","pages":"828-832"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Expedited generation of terrain digital classes in flat areas from UAV images for precision agriculture purposes\",\"authors\":\"M. C. Pineda, C. Perdomo, R. Caballero, A. Valera, J. A. Martínez-Casasnovas, J. Viloria\",\"doi\":\"10.1017/S2040470017000322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precision agriculture (PA) requires reasonably homogeneous areas for site-specific management. This work explores the applicability of digital terrain classes obtained from a digital elevation model derived from UAV-acquired images, to define management units in in a relative flat area of about 6 ha. Elevation, together with other terrain variables such as: slope degree, profile curvature, plan curvature, topographic wetness index, sediment transport index, were clustered using the Fuzzy Kohonen Clustering Network (FKCN). Four terrain classes were obtained. The result was compared with a map produced by a classification of soil properties previously interpolated by ordinary kriging. The results suggest that areas for site-specific management can be defined from terrain classes based on environmental covariates, saving time and cost in comparison with interpolation of soil variables.\",\"PeriodicalId\":7228,\"journal\":{\"name\":\"Advances in Animal Biosciences\",\"volume\":\"14 1\",\"pages\":\"828-832\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Animal Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S2040470017000322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Animal Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S2040470017000322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

精准农业(PA)需要合理均匀的区域来进行具体的管理。这项工作探讨了从无人机获取的图像中获得的数字高差模型中获得的数字地形类别的适用性,以在大约6公顷的相对平坦区域内定义管理单元。利用模糊Kohonen聚类网络(FKCN)对高程、坡度、剖面曲率、平面曲率、地形湿度指数、输沙指数等地形变量进行聚类。得到了四个地形类别。结果与以前用普通克里格法插值的土壤性质分类所产生的地图进行了比较。结果表明,与土壤变量插值相比,基于环境协变量的地形类别可以定义适合特定场地管理的区域,节省了时间和成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expedited generation of terrain digital classes in flat areas from UAV images for precision agriculture purposes
Precision agriculture (PA) requires reasonably homogeneous areas for site-specific management. This work explores the applicability of digital terrain classes obtained from a digital elevation model derived from UAV-acquired images, to define management units in in a relative flat area of about 6 ha. Elevation, together with other terrain variables such as: slope degree, profile curvature, plan curvature, topographic wetness index, sediment transport index, were clustered using the Fuzzy Kohonen Clustering Network (FKCN). Four terrain classes were obtained. The result was compared with a map produced by a classification of soil properties previously interpolated by ordinary kriging. The results suggest that areas for site-specific management can be defined from terrain classes based on environmental covariates, saving time and cost in comparison with interpolation of soil variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信