量子计算中基于代数旋量的一般公式

M. Trindade, S. Floquet, J. Vianna
{"title":"量子计算中基于代数旋量的一般公式","authors":"M. Trindade, S. Floquet, J. Vianna","doi":"10.1142/S0219887820502060","DOIUrl":null,"url":null,"abstract":"In this work we explore the structure of Clifford algebras and the representations of the algebraic spinors in quantum information theory. Initially we present an general formulation through elements of left minimal ideals in tensor products of the Clifford algebra $Cl^{+}_{1,3}$. Posteriorly we perform some applications in quantum computation: qubits, entangled states, quantum gates, representations of the braid group, quantum teleportation, Majorana operators and supersymmetry. Finally, we discuss advantages related to standard Hilbert space formulation.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A general formulation based on algebraic spinors for the quantum computation\",\"authors\":\"M. Trindade, S. Floquet, J. Vianna\",\"doi\":\"10.1142/S0219887820502060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we explore the structure of Clifford algebras and the representations of the algebraic spinors in quantum information theory. Initially we present an general formulation through elements of left minimal ideals in tensor products of the Clifford algebra $Cl^{+}_{1,3}$. Posteriorly we perform some applications in quantum computation: qubits, entangled states, quantum gates, representations of the braid group, quantum teleportation, Majorana operators and supersymmetry. Finally, we discuss advantages related to standard Hilbert space formulation.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219887820502060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219887820502060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,我们探讨了Clifford代数的结构和量子信息论中代数旋量的表示。首先,我们通过Clifford代数$Cl^{+}_{1,3}$张量积中的左极小理想元素给出了一个一般公式。之后,我们在量子计算中进行了一些应用:量子比特、纠缠态、量子门、编织群的表示、量子隐形传态、马约拉纳算子和超对称。最后,讨论了标准希尔伯特空间公式的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A general formulation based on algebraic spinors for the quantum computation
In this work we explore the structure of Clifford algebras and the representations of the algebraic spinors in quantum information theory. Initially we present an general formulation through elements of left minimal ideals in tensor products of the Clifford algebra $Cl^{+}_{1,3}$. Posteriorly we perform some applications in quantum computation: qubits, entangled states, quantum gates, representations of the braid group, quantum teleportation, Majorana operators and supersymmetry. Finally, we discuss advantages related to standard Hilbert space formulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信