直角双曲多面体的体积估计

A. Egorov, A. Vesnin
{"title":"直角双曲多面体的体积估计","authors":"A. Egorov, A. Vesnin","doi":"10.13137/2464-8728/30958","DOIUrl":null,"url":null,"abstract":"By Andreev theorem acute-angled polyhedra of finite volume in a hyperbolic space $\\mathbb H^{3}$ are uniquely determined by combinatorics of their 1-skeletons and dihedral angles. For a class of compact right-angled polyhedra and a class of ideal right-angled polyhedra estimates of volumes in terms of the number of vertices were obtained by Atkinson in 2009. In the present paper upper estimates for both classes are improved.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"199 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Volume estimates for right-angled hyperbolic polyhedra\",\"authors\":\"A. Egorov, A. Vesnin\",\"doi\":\"10.13137/2464-8728/30958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By Andreev theorem acute-angled polyhedra of finite volume in a hyperbolic space $\\\\mathbb H^{3}$ are uniquely determined by combinatorics of their 1-skeletons and dihedral angles. For a class of compact right-angled polyhedra and a class of ideal right-angled polyhedra estimates of volumes in terms of the number of vertices were obtained by Atkinson in 2009. In the present paper upper estimates for both classes are improved.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"199 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13137/2464-8728/30958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13137/2464-8728/30958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

根据Andreev定理,双曲空间中有限体积的锐角多面体$\mathbb H^{3}$是由它们的1-骨架和二面角的组合唯一确定的。对于一类紧致直角多面体和一类理想直角多面体,Atkinson(2009)给出了基于顶点数的体积估计。本文改进了这两类的上估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Volume estimates for right-angled hyperbolic polyhedra
By Andreev theorem acute-angled polyhedra of finite volume in a hyperbolic space $\mathbb H^{3}$ are uniquely determined by combinatorics of their 1-skeletons and dihedral angles. For a class of compact right-angled polyhedra and a class of ideal right-angled polyhedra estimates of volumes in terms of the number of vertices were obtained by Atkinson in 2009. In the present paper upper estimates for both classes are improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信