{"title":"直角双曲多面体的体积估计","authors":"A. Egorov, A. Vesnin","doi":"10.13137/2464-8728/30958","DOIUrl":null,"url":null,"abstract":"By Andreev theorem acute-angled polyhedra of finite volume in a hyperbolic space $\\mathbb H^{3}$ are uniquely determined by combinatorics of their 1-skeletons and dihedral angles. For a class of compact right-angled polyhedra and a class of ideal right-angled polyhedra estimates of volumes in terms of the number of vertices were obtained by Atkinson in 2009. In the present paper upper estimates for both classes are improved.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"199 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Volume estimates for right-angled hyperbolic polyhedra\",\"authors\":\"A. Egorov, A. Vesnin\",\"doi\":\"10.13137/2464-8728/30958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By Andreev theorem acute-angled polyhedra of finite volume in a hyperbolic space $\\\\mathbb H^{3}$ are uniquely determined by combinatorics of their 1-skeletons and dihedral angles. For a class of compact right-angled polyhedra and a class of ideal right-angled polyhedra estimates of volumes in terms of the number of vertices were obtained by Atkinson in 2009. In the present paper upper estimates for both classes are improved.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"199 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13137/2464-8728/30958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13137/2464-8728/30958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Volume estimates for right-angled hyperbolic polyhedra
By Andreev theorem acute-angled polyhedra of finite volume in a hyperbolic space $\mathbb H^{3}$ are uniquely determined by combinatorics of their 1-skeletons and dihedral angles. For a class of compact right-angled polyhedra and a class of ideal right-angled polyhedra estimates of volumes in terms of the number of vertices were obtained by Atkinson in 2009. In the present paper upper estimates for both classes are improved.