{"title":"方向边转义点集的Hausdorff维数","authors":"Xiaojie Huang, Zhixiu Liu, Yuntong Li","doi":"10.3336/gm.57.2.05","DOIUrl":null,"url":null,"abstract":"In this paper, we define the directional edge escaping points set of function iteration under a given plane partition and then prove that the upper bound of Hausdorff dimension of the directional edge escaping points set of \\(S(z)=a e^{z}+b e^{-z}\\), where \\(a, b\\in \\mathbb{C}\\) and \\(|a|^{2}+|b|^{2}\\neq 0\\), is no more than 1.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Hausdorff dimension of directional edge escaping points set\",\"authors\":\"Xiaojie Huang, Zhixiu Liu, Yuntong Li\",\"doi\":\"10.3336/gm.57.2.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we define the directional edge escaping points set of function iteration under a given plane partition and then prove that the upper bound of Hausdorff dimension of the directional edge escaping points set of \\\\(S(z)=a e^{z}+b e^{-z}\\\\), where \\\\(a, b\\\\in \\\\mathbb{C}\\\\) and \\\\(|a|^{2}+|b|^{2}\\\\neq 0\\\\), is no more than 1.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.57.2.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.57.2.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Hausdorff dimension of directional edge escaping points set
In this paper, we define the directional edge escaping points set of function iteration under a given plane partition and then prove that the upper bound of Hausdorff dimension of the directional edge escaping points set of \(S(z)=a e^{z}+b e^{-z}\), where \(a, b\in \mathbb{C}\) and \(|a|^{2}+|b|^{2}\neq 0\), is no more than 1.