广义递归方法在非线性常微分方程中的推广

K. Issa , R.B. Adeniyi
{"title":"广义递归方法在非线性常微分方程中的推广","authors":"K. Issa ,&nbsp;R.B. Adeniyi","doi":"10.1016/j.jnnms.2015.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>In a recent paper, we reported a generalized approximation technique for the recursive formulation of the Tau method. This paper is concerned with an extension of that discourse to non-linear ordinary differential equations. The numerical results show that the method is effective and accurate.</p></div>","PeriodicalId":17275,"journal":{"name":"Journal of the Nigerian Mathematical Society","volume":"35 1","pages":"Pages 18-24"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jnnms.2015.02.002","citationCount":"5","resultStr":"{\"title\":\"Extension of generalized recursive Tau method to non-linear ordinary differential equations\",\"authors\":\"K. Issa ,&nbsp;R.B. Adeniyi\",\"doi\":\"10.1016/j.jnnms.2015.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In a recent paper, we reported a generalized approximation technique for the recursive formulation of the Tau method. This paper is concerned with an extension of that discourse to non-linear ordinary differential equations. The numerical results show that the method is effective and accurate.</p></div>\",\"PeriodicalId\":17275,\"journal\":{\"name\":\"Journal of the Nigerian Mathematical Society\",\"volume\":\"35 1\",\"pages\":\"Pages 18-24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jnnms.2015.02.002\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Nigerian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0189896515000207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Nigerian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0189896515000207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在最近的一篇论文中,我们报道了Tau方法递归公式的一种广义近似技术。本文将这一论述推广到非线性常微分方程。数值结果表明,该方法是有效和准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extension of generalized recursive Tau method to non-linear ordinary differential equations

In a recent paper, we reported a generalized approximation technique for the recursive formulation of the Tau method. This paper is concerned with an extension of that discourse to non-linear ordinary differential equations. The numerical results show that the method is effective and accurate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信