分数阶抛物型方程在全空间中的解析性和可观测性

IF 1.3 3区 数学 Q4 AUTOMATION & CONTROL SYSTEMS
Ming Wang, Can Zhang
{"title":"分数阶抛物型方程在全空间中的解析性和可观测性","authors":"Ming Wang, Can Zhang","doi":"10.1051/cocv/2023053","DOIUrl":null,"url":null,"abstract":"In this paper, we study the quantitative analyticity and observability inequality for solutions of fractional order parabolic equations with space-time dependent potentials in R^n. We first obtain a uniformly lower bound of analyticity radius of the spatial variable for the above solutions with respect to the time variable. Next, we prove a globally H\\''older-type interpolation inequality on a thick set, which is based on a propagation estimate of smallness for analytic functions. Finally, we establish an observability inequality from a thick set   by utilizing a telescoping series method.","PeriodicalId":50500,"journal":{"name":"Esaim-Control Optimisation and Calculus of Variations","volume":"11 2 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analyticity and observability for fractional order parabolic equations in the whole space\",\"authors\":\"Ming Wang, Can Zhang\",\"doi\":\"10.1051/cocv/2023053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the quantitative analyticity and observability inequality for solutions of fractional order parabolic equations with space-time dependent potentials in R^n. We first obtain a uniformly lower bound of analyticity radius of the spatial variable for the above solutions with respect to the time variable. Next, we prove a globally H\\\\''older-type interpolation inequality on a thick set, which is based on a propagation estimate of smallness for analytic functions. Finally, we establish an observability inequality from a thick set   by utilizing a telescoping series method.\",\"PeriodicalId\":50500,\"journal\":{\"name\":\"Esaim-Control Optimisation and Calculus of Variations\",\"volume\":\"11 2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Control Optimisation and Calculus of Variations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/cocv/2023053\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Control Optimisation and Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/cocv/2023053","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了R^n中具有时空相关势的分数阶抛物方程解的定量分析性和可观察性不等式。我们首先得到了上述解的空间变量解析半径相对于时间变量的一致下界。其次,我们证明了厚集上的一个全局H\ \ old型插值不等式,该不等式基于解析函数的小传播估计。最后,利用可伸缩级数的方法,在厚集上建立了一个可观测不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyticity and observability for fractional order parabolic equations in the whole space
In this paper, we study the quantitative analyticity and observability inequality for solutions of fractional order parabolic equations with space-time dependent potentials in R^n. We first obtain a uniformly lower bound of analyticity radius of the spatial variable for the above solutions with respect to the time variable. Next, we prove a globally H\''older-type interpolation inequality on a thick set, which is based on a propagation estimate of smallness for analytic functions. Finally, we establish an observability inequality from a thick set   by utilizing a telescoping series method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Esaim-Control Optimisation and Calculus of Variations
Esaim-Control Optimisation and Calculus of Variations Mathematics-Computational Mathematics
自引率
7.10%
发文量
77
期刊介绍: ESAIM: COCV strives to publish rapidly and efficiently papers and surveys in the areas of Control, Optimisation and Calculus of Variations. Articles may be theoretical, computational, or both, and they will cover contemporary subjects with impact in forefront technology, biosciences, materials science, computer vision, continuum physics, decision sciences and other allied disciplines. Targeted topics include: in control: modeling, controllability, optimal control, stabilization, control design, hybrid control, robustness analysis, numerical and computational methods for control, stochastic or deterministic, continuous or discrete control systems, finite-dimensional or infinite-dimensional control systems, geometric control, quantum control, game theory; in optimisation: mathematical programming, large scale systems, stochastic optimisation, combinatorial optimisation, shape optimisation, convex or nonsmooth optimisation, inverse problems, interior point methods, duality methods, numerical methods, convergence and complexity, global optimisation, optimisation and dynamical systems, optimal transport, machine learning, image or signal analysis; in calculus of variations: variational methods for differential equations and Hamiltonian systems, variational inequalities; semicontinuity and convergence, existence and regularity of minimizers and critical points of functionals, relaxation; geometric problems and the use and development of geometric measure theory tools; problems involving randomness; viscosity solutions; numerical methods; homogenization, multiscale and singular perturbation problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信