生育数量

IF 0.4 Q4 MATHEMATICS, APPLIED
Colin Defant
{"title":"生育数量","authors":"Colin Defant","doi":"10.4310/joc.2020.v11.n3.a6","DOIUrl":null,"url":null,"abstract":"A nonnegative integer is called a fertility number if it is equal to the number of preimages of a permutation under West's stack-sorting map. We prove structural results concerning permutations, allowing us to deduce information about the set of fertility numbers. In particular, the set of fertility numbers is closed under multiplication and contains every nonnegative integer that is not congruent to $3$ modulo $4$. We show that the lower asymptotic density of the set of fertility numbers is at least $1954/2565\\approx 0.7618$. We also exhibit some positive integers that are not fertility numbers and conjecture that there are infinitely many such numbers.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Fertility numbers\",\"authors\":\"Colin Defant\",\"doi\":\"10.4310/joc.2020.v11.n3.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nonnegative integer is called a fertility number if it is equal to the number of preimages of a permutation under West's stack-sorting map. We prove structural results concerning permutations, allowing us to deduce information about the set of fertility numbers. In particular, the set of fertility numbers is closed under multiplication and contains every nonnegative integer that is not congruent to $3$ modulo $4$. We show that the lower asymptotic density of the set of fertility numbers is at least $1954/2565\\\\approx 0.7618$. We also exhibit some positive integers that are not fertility numbers and conjecture that there are infinitely many such numbers.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/joc.2020.v11.n3.a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2020.v11.n3.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 18

摘要

如果一个非负整数等于一个排列在West的堆栈排序映射下的原象的数目,则称为可育数。我们证明了有关排列的结构结果,使我们能够推断出生育数集的信息。特别地,生育数的集合在乘法下是封闭的,并且包含所有不等于$3$取$4$模的非负整数。我们证明了生育数集合的下渐近密度至少为$1954/2565\约0.7618$。我们还展示了一些非生育数的正整数,并推测有无穷多个这样的数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fertility numbers
A nonnegative integer is called a fertility number if it is equal to the number of preimages of a permutation under West's stack-sorting map. We prove structural results concerning permutations, allowing us to deduce information about the set of fertility numbers. In particular, the set of fertility numbers is closed under multiplication and contains every nonnegative integer that is not congruent to $3$ modulo $4$. We show that the lower asymptotic density of the set of fertility numbers is at least $1954/2565\approx 0.7618$. We also exhibit some positive integers that are not fertility numbers and conjecture that there are infinitely many such numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信