{"title":"生育数量","authors":"Colin Defant","doi":"10.4310/joc.2020.v11.n3.a6","DOIUrl":null,"url":null,"abstract":"A nonnegative integer is called a fertility number if it is equal to the number of preimages of a permutation under West's stack-sorting map. We prove structural results concerning permutations, allowing us to deduce information about the set of fertility numbers. In particular, the set of fertility numbers is closed under multiplication and contains every nonnegative integer that is not congruent to $3$ modulo $4$. We show that the lower asymptotic density of the set of fertility numbers is at least $1954/2565\\approx 0.7618$. We also exhibit some positive integers that are not fertility numbers and conjecture that there are infinitely many such numbers.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Fertility numbers\",\"authors\":\"Colin Defant\",\"doi\":\"10.4310/joc.2020.v11.n3.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nonnegative integer is called a fertility number if it is equal to the number of preimages of a permutation under West's stack-sorting map. We prove structural results concerning permutations, allowing us to deduce information about the set of fertility numbers. In particular, the set of fertility numbers is closed under multiplication and contains every nonnegative integer that is not congruent to $3$ modulo $4$. We show that the lower asymptotic density of the set of fertility numbers is at least $1954/2565\\\\approx 0.7618$. We also exhibit some positive integers that are not fertility numbers and conjecture that there are infinitely many such numbers.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/joc.2020.v11.n3.a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2020.v11.n3.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A nonnegative integer is called a fertility number if it is equal to the number of preimages of a permutation under West's stack-sorting map. We prove structural results concerning permutations, allowing us to deduce information about the set of fertility numbers. In particular, the set of fertility numbers is closed under multiplication and contains every nonnegative integer that is not congruent to $3$ modulo $4$. We show that the lower asymptotic density of the set of fertility numbers is at least $1954/2565\approx 0.7618$. We also exhibit some positive integers that are not fertility numbers and conjecture that there are infinitely many such numbers.