{"title":"纳米二氧化硅和纳米粘土粉增强椰壳纤维生物复合材料管的优化设计","authors":"A. Khalkhali, S. Daghighi","doi":"10.5829/ije.2017.30.12c.11","DOIUrl":null,"url":null,"abstract":"Due to significant environmental advantages, biocomposites have recently received increasing attention. In the present research, strength of hat-shaped coir fiber biocomposites tubes reinforced with nano powder was evaluated experimentally under 3-point bending tests. The tubes were manufactured using hand lay-up technique and based on Taguchi design of experiment. The effects of different parameters including fiber loading, type of nano powder and its weight percentage and also weight percentage of NaOH in alkali treatment were analyzed. Optimization was also performed using Taguchi L8 orthogonal array. Moreover, analysis of variance (ANOVA) was conducted to determine the significance of the parameters. In this study, finite element model was also created in ABAQUS software to compare with the results obtained from the experiments to achieve validated finite element model. There was a good agreement between the results from experiments and those obtained in numerical simulations.","PeriodicalId":14066,"journal":{"name":"International Journal of Engineering - Transactions C: Aspects","volume":"10 1","pages":"1894-1902"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimum Design of a Coir Fiber Biocomposite Tube Reinforced with Nano Silica and Nano Clay Powder\",\"authors\":\"A. Khalkhali, S. Daghighi\",\"doi\":\"10.5829/ije.2017.30.12c.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to significant environmental advantages, biocomposites have recently received increasing attention. In the present research, strength of hat-shaped coir fiber biocomposites tubes reinforced with nano powder was evaluated experimentally under 3-point bending tests. The tubes were manufactured using hand lay-up technique and based on Taguchi design of experiment. The effects of different parameters including fiber loading, type of nano powder and its weight percentage and also weight percentage of NaOH in alkali treatment were analyzed. Optimization was also performed using Taguchi L8 orthogonal array. Moreover, analysis of variance (ANOVA) was conducted to determine the significance of the parameters. In this study, finite element model was also created in ABAQUS software to compare with the results obtained from the experiments to achieve validated finite element model. There was a good agreement between the results from experiments and those obtained in numerical simulations.\",\"PeriodicalId\":14066,\"journal\":{\"name\":\"International Journal of Engineering - Transactions C: Aspects\",\"volume\":\"10 1\",\"pages\":\"1894-1902\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering - Transactions C: Aspects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5829/ije.2017.30.12c.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering - Transactions C: Aspects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5829/ije.2017.30.12c.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Optimum Design of a Coir Fiber Biocomposite Tube Reinforced with Nano Silica and Nano Clay Powder
Due to significant environmental advantages, biocomposites have recently received increasing attention. In the present research, strength of hat-shaped coir fiber biocomposites tubes reinforced with nano powder was evaluated experimentally under 3-point bending tests. The tubes were manufactured using hand lay-up technique and based on Taguchi design of experiment. The effects of different parameters including fiber loading, type of nano powder and its weight percentage and also weight percentage of NaOH in alkali treatment were analyzed. Optimization was also performed using Taguchi L8 orthogonal array. Moreover, analysis of variance (ANOVA) was conducted to determine the significance of the parameters. In this study, finite element model was also created in ABAQUS software to compare with the results obtained from the experiments to achieve validated finite element model. There was a good agreement between the results from experiments and those obtained in numerical simulations.