Thierry Balliau, Harold Duruflé, Nicolas Blanchet, Mélisande Blein-Nicolas, N. Langlade, M. Zivy
{"title":"水分亏缺条件下24个向日葵基因型叶片蛋白质组学分析","authors":"Thierry Balliau, Harold Duruflé, Nicolas Blanchet, Mélisande Blein-Nicolas, N. Langlade, M. Zivy","doi":"10.1051/OCL/2020074","DOIUrl":null,"url":null,"abstract":"This article describes a proteomic data set produced from sunflower plants subjected to water deficit. Twenty-four sunflower genotypes were selected to represent genetic diversity within cultivated sunflower. They included both inbred lines and their hybrids. Water deficit was applied to plants in pots at the vegetative stage using the high-throughput phenotyping platform Heliaphen. We present here the identification of 3062 proteins and the quantification of 1211 of them in the leaves of the 24 genotypes grown under two watering conditions. These data allow the study of both the effects of genetic variations and watering conditions. They constitute a valuable resource for the community to study adaptation of crops to drought and the molecular basis of heterosis.","PeriodicalId":19440,"journal":{"name":"OCL","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Proteomic data from leaves of twenty-four sunflower genotypes under water deficit\",\"authors\":\"Thierry Balliau, Harold Duruflé, Nicolas Blanchet, Mélisande Blein-Nicolas, N. Langlade, M. Zivy\",\"doi\":\"10.1051/OCL/2020074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes a proteomic data set produced from sunflower plants subjected to water deficit. Twenty-four sunflower genotypes were selected to represent genetic diversity within cultivated sunflower. They included both inbred lines and their hybrids. Water deficit was applied to plants in pots at the vegetative stage using the high-throughput phenotyping platform Heliaphen. We present here the identification of 3062 proteins and the quantification of 1211 of them in the leaves of the 24 genotypes grown under two watering conditions. These data allow the study of both the effects of genetic variations and watering conditions. They constitute a valuable resource for the community to study adaptation of crops to drought and the molecular basis of heterosis.\",\"PeriodicalId\":19440,\"journal\":{\"name\":\"OCL\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/OCL/2020074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/OCL/2020074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proteomic data from leaves of twenty-four sunflower genotypes under water deficit
This article describes a proteomic data set produced from sunflower plants subjected to water deficit. Twenty-four sunflower genotypes were selected to represent genetic diversity within cultivated sunflower. They included both inbred lines and their hybrids. Water deficit was applied to plants in pots at the vegetative stage using the high-throughput phenotyping platform Heliaphen. We present here the identification of 3062 proteins and the quantification of 1211 of them in the leaves of the 24 genotypes grown under two watering conditions. These data allow the study of both the effects of genetic variations and watering conditions. They constitute a valuable resource for the community to study adaptation of crops to drought and the molecular basis of heterosis.