幂超立方体中二元常权码诱导子图的最大团

Juanjuan Shi, Yongfang Kou, Yulan Hu, Weihua Yang
{"title":"幂超立方体中二元常权码诱导子图的最大团","authors":"Juanjuan Shi, Yongfang Kou, Yulan Hu, Weihua Yang","doi":"10.1093/comjnl/bxac103","DOIUrl":null,"url":null,"abstract":"\n The problem of finding the maximum independent sets (or maximum cliques) of a given graph is fundamental in graph theory and is also one of the most important in terms of the application of graph theory. Let $A(n,d,w)$ be the size of the maximum independent set of $Q_{n}^{(d-1,w)}$, which is the induced subgraph of points of weight $w$ of the $d-1^{th}$-power of $n$-dimensional hypercubes. In order to further understand and study the dependent set of $Q_{n}^{(d-1,w)}$, we explore its clique number and the structure of the maximum clique. This paper obtains the clique number and the structure of the maximum clique of $Q_{n}^{(d-1,w)}$ for $5\\leq d\\leq 6$. Moreover, the characterizations for $A(n,d,w)=2$ and $3$ are also given.","PeriodicalId":21872,"journal":{"name":"South Afr. Comput. J.","volume":"381 1","pages":"2535-2541"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On The Maximum Cliques Of The Subgraphs Induced By Binary Constant Weight Codes In Powers Of Hypercubes\",\"authors\":\"Juanjuan Shi, Yongfang Kou, Yulan Hu, Weihua Yang\",\"doi\":\"10.1093/comjnl/bxac103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The problem of finding the maximum independent sets (or maximum cliques) of a given graph is fundamental in graph theory and is also one of the most important in terms of the application of graph theory. Let $A(n,d,w)$ be the size of the maximum independent set of $Q_{n}^{(d-1,w)}$, which is the induced subgraph of points of weight $w$ of the $d-1^{th}$-power of $n$-dimensional hypercubes. In order to further understand and study the dependent set of $Q_{n}^{(d-1,w)}$, we explore its clique number and the structure of the maximum clique. This paper obtains the clique number and the structure of the maximum clique of $Q_{n}^{(d-1,w)}$ for $5\\\\leq d\\\\leq 6$. Moreover, the characterizations for $A(n,d,w)=2$ and $3$ are also given.\",\"PeriodicalId\":21872,\"journal\":{\"name\":\"South Afr. Comput. J.\",\"volume\":\"381 1\",\"pages\":\"2535-2541\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South Afr. Comput. J.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/comjnl/bxac103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South Afr. Comput. J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/comjnl/bxac103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

求给定图的最大独立集(或最大团)是图论的基本问题,也是图论应用中最重要的问题之一。设$A(n,d,w)$为$Q_{n}^{(d-1,w)}$的最大独立集的大小,它是$n$维超立方体的$d-1^{th}$ -幂的权重点$w$的诱导子图。为了进一步理解和研究$Q_{n}^{(d-1,w)}$的依赖集,我们探讨了它的团数和最大团的结构。本文给出了$5\leq d\leq 6$的团数和最大团$Q_{n}^{(d-1,w)}$的结构。此外,还给出了$A(n,d,w)=2$和$3$的表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On The Maximum Cliques Of The Subgraphs Induced By Binary Constant Weight Codes In Powers Of Hypercubes
The problem of finding the maximum independent sets (or maximum cliques) of a given graph is fundamental in graph theory and is also one of the most important in terms of the application of graph theory. Let $A(n,d,w)$ be the size of the maximum independent set of $Q_{n}^{(d-1,w)}$, which is the induced subgraph of points of weight $w$ of the $d-1^{th}$-power of $n$-dimensional hypercubes. In order to further understand and study the dependent set of $Q_{n}^{(d-1,w)}$, we explore its clique number and the structure of the maximum clique. This paper obtains the clique number and the structure of the maximum clique of $Q_{n}^{(d-1,w)}$ for $5\leq d\leq 6$. Moreover, the characterizations for $A(n,d,w)=2$ and $3$ are also given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信