{"title":"终极目标:将人类和机器学习结合起来,检测网络威胁","authors":"Ignacio Arnaldo, K. Veeramachaneni","doi":"10.1145/3373464.3373472","DOIUrl":null,"url":null,"abstract":"Although there is a large corpus of research focused on using machine learning to detect cyber threats, the solutions presented are rarely actually adopted in the real world. In this paper, we discuss the challenges that currently limit the adoption of machine learning in security operations, with a special focus on label acquisition, model deployment, and the integration of model findings into existing investigation workflows. Moreover, we posit that the conventional approach to the development of machine learning models, whereby researchers work offline on representative datasets to develop accurate models, is not valid for many cybersecurity use cases. Instead, a different approach is needed: to integrate the creation and maintenance of machine learning models into security operations themselves.","PeriodicalId":90050,"journal":{"name":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","volume":"6 1","pages":"39-47"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Holy Grail of: Teaming humans and machine learning for detecting cyber threats\",\"authors\":\"Ignacio Arnaldo, K. Veeramachaneni\",\"doi\":\"10.1145/3373464.3373472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although there is a large corpus of research focused on using machine learning to detect cyber threats, the solutions presented are rarely actually adopted in the real world. In this paper, we discuss the challenges that currently limit the adoption of machine learning in security operations, with a special focus on label acquisition, model deployment, and the integration of model findings into existing investigation workflows. Moreover, we posit that the conventional approach to the development of machine learning models, whereby researchers work offline on representative datasets to develop accurate models, is not valid for many cybersecurity use cases. Instead, a different approach is needed: to integrate the creation and maintenance of machine learning models into security operations themselves.\",\"PeriodicalId\":90050,\"journal\":{\"name\":\"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining\",\"volume\":\"6 1\",\"pages\":\"39-47\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3373464.3373472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3373464.3373472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Holy Grail of: Teaming humans and machine learning for detecting cyber threats
Although there is a large corpus of research focused on using machine learning to detect cyber threats, the solutions presented are rarely actually adopted in the real world. In this paper, we discuss the challenges that currently limit the adoption of machine learning in security operations, with a special focus on label acquisition, model deployment, and the integration of model findings into existing investigation workflows. Moreover, we posit that the conventional approach to the development of machine learning models, whereby researchers work offline on representative datasets to develop accurate models, is not valid for many cybersecurity use cases. Instead, a different approach is needed: to integrate the creation and maintenance of machine learning models into security operations themselves.