Surendar Devasundaram, Andrea Raymond, Mark Virgen, Drue Shapiro, Joon-Hyuk Park
{"title":"用于人体健康和环境监测的可重构多模态可穿戴传感器网络(RMWSN)设计","authors":"Surendar Devasundaram, Andrea Raymond, Mark Virgen, Drue Shapiro, Joon-Hyuk Park","doi":"10.5220/0010838100003118","DOIUrl":null,"url":null,"abstract":"The studies of human physiology, movement biomechanics and environmental interaction are generally conducted in laboratory settings using standard lab equipment such as Electrocardiography (ECG), respiration belt, motion capture cameras and a force-plate instrumented treadmill. With recent advancements in wearable technology, research on human behaviour, physiology and biomechanics in real-world environments has become much more viable and offers a means to collect real-world data from a broader range of activities. However, current wearable devices are typically a stand-alone system, each employing its own hardware and software interfaces that often vary between different systems, thus making it difficult to simultaneously integrate and instrument them on a user for synchronous multimodal measurements. To overcome this limitation, we propose a reconfigurable multimodal wearable sensor network (RMWSN) for real-time monitoring and data acquisition of various biomechanics, physiological and environmental parameters. The RMWSN incorporates a two-tier sensor network: the first tier utilizes wearable sensors with a microcontroller and the second tier consists of an efficient edge computing device for real-time data processing, data logging and wireless data transmission. The novel feature of the system that differentiates itself from existing wearable sensor systems is the modular and reconfigurable design in a wearable form, its scalability, easy accessibility, and integration with external computing devices. The outcomes of this research demonstrate an efficient multimodal wearable sensor network for use in many applications for human health and ambience monitoring.","PeriodicalId":72028,"journal":{"name":"... International Conference on Wearable and Implantable Body Sensor Networks. International Conference on Wearable and Implantable Body Sensor Networks","volume":"26 1","pages":"26-33"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a Reconfigurable Multimodal Wearable Sensor Network (RMWSN) for Human Health and Ambience Monitoring\",\"authors\":\"Surendar Devasundaram, Andrea Raymond, Mark Virgen, Drue Shapiro, Joon-Hyuk Park\",\"doi\":\"10.5220/0010838100003118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The studies of human physiology, movement biomechanics and environmental interaction are generally conducted in laboratory settings using standard lab equipment such as Electrocardiography (ECG), respiration belt, motion capture cameras and a force-plate instrumented treadmill. With recent advancements in wearable technology, research on human behaviour, physiology and biomechanics in real-world environments has become much more viable and offers a means to collect real-world data from a broader range of activities. However, current wearable devices are typically a stand-alone system, each employing its own hardware and software interfaces that often vary between different systems, thus making it difficult to simultaneously integrate and instrument them on a user for synchronous multimodal measurements. To overcome this limitation, we propose a reconfigurable multimodal wearable sensor network (RMWSN) for real-time monitoring and data acquisition of various biomechanics, physiological and environmental parameters. The RMWSN incorporates a two-tier sensor network: the first tier utilizes wearable sensors with a microcontroller and the second tier consists of an efficient edge computing device for real-time data processing, data logging and wireless data transmission. The novel feature of the system that differentiates itself from existing wearable sensor systems is the modular and reconfigurable design in a wearable form, its scalability, easy accessibility, and integration with external computing devices. The outcomes of this research demonstrate an efficient multimodal wearable sensor network for use in many applications for human health and ambience monitoring.\",\"PeriodicalId\":72028,\"journal\":{\"name\":\"... International Conference on Wearable and Implantable Body Sensor Networks. International Conference on Wearable and Implantable Body Sensor Networks\",\"volume\":\"26 1\",\"pages\":\"26-33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... International Conference on Wearable and Implantable Body Sensor Networks. International Conference on Wearable and Implantable Body Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0010838100003118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Conference on Wearable and Implantable Body Sensor Networks. International Conference on Wearable and Implantable Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010838100003118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a Reconfigurable Multimodal Wearable Sensor Network (RMWSN) for Human Health and Ambience Monitoring
The studies of human physiology, movement biomechanics and environmental interaction are generally conducted in laboratory settings using standard lab equipment such as Electrocardiography (ECG), respiration belt, motion capture cameras and a force-plate instrumented treadmill. With recent advancements in wearable technology, research on human behaviour, physiology and biomechanics in real-world environments has become much more viable and offers a means to collect real-world data from a broader range of activities. However, current wearable devices are typically a stand-alone system, each employing its own hardware and software interfaces that often vary between different systems, thus making it difficult to simultaneously integrate and instrument them on a user for synchronous multimodal measurements. To overcome this limitation, we propose a reconfigurable multimodal wearable sensor network (RMWSN) for real-time monitoring and data acquisition of various biomechanics, physiological and environmental parameters. The RMWSN incorporates a two-tier sensor network: the first tier utilizes wearable sensors with a microcontroller and the second tier consists of an efficient edge computing device for real-time data processing, data logging and wireless data transmission. The novel feature of the system that differentiates itself from existing wearable sensor systems is the modular and reconfigurable design in a wearable form, its scalability, easy accessibility, and integration with external computing devices. The outcomes of this research demonstrate an efficient multimodal wearable sensor network for use in many applications for human health and ambience monitoring.