对称群中的联立共轭问题

A. Brodnik, A. Malnic, Rok Požar
{"title":"对称群中的联立共轭问题","authors":"A. Brodnik, A. Malnic, Rok Požar","doi":"10.1090/MCOM/3637","DOIUrl":null,"url":null,"abstract":"The transitive simultaneous conjugacy problem asks whether there exists a permutation $\\tau \\in S_n$ such that $b_j = \\tau^{-1} a_j \\tau$ holds for all $j = 1,2, \\ldots, d$, where $a_1, a_2, \\ldots, a_d$ and $b_1, b_2, \\ldots, b_d$ are given sequences of $d$ permutations in $S_n$, each of which generates a transitive subgroup of $S_n$. As from mid 70' it has been known that the problem can be solved in $O(dn^2)$ time. An algorithm with running time $O(dn \\log(dn))$, proposed in late 80', does not work correctly on all input data. In this paper we solve the transitive simultaneous conjugacy problem in $O(n^2 \\log d / \\log n + dn\\log n)$ time and $O(n^{3/ 2} + dn)$ space. Experimental evaluation on random instances shows that the expected running time of our algorithm is considerably better, perhaps even nearly linear in $n$ at given $d$.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"30 1","pages":"2977-2995"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The simultaneous conjugacy problem in the symmetric group\",\"authors\":\"A. Brodnik, A. Malnic, Rok Požar\",\"doi\":\"10.1090/MCOM/3637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transitive simultaneous conjugacy problem asks whether there exists a permutation $\\\\tau \\\\in S_n$ such that $b_j = \\\\tau^{-1} a_j \\\\tau$ holds for all $j = 1,2, \\\\ldots, d$, where $a_1, a_2, \\\\ldots, a_d$ and $b_1, b_2, \\\\ldots, b_d$ are given sequences of $d$ permutations in $S_n$, each of which generates a transitive subgroup of $S_n$. As from mid 70' it has been known that the problem can be solved in $O(dn^2)$ time. An algorithm with running time $O(dn \\\\log(dn))$, proposed in late 80', does not work correctly on all input data. In this paper we solve the transitive simultaneous conjugacy problem in $O(n^2 \\\\log d / \\\\log n + dn\\\\log n)$ time and $O(n^{3/ 2} + dn)$ space. Experimental evaluation on random instances shows that the expected running time of our algorithm is considerably better, perhaps even nearly linear in $n$ at given $d$.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"30 1\",\"pages\":\"2977-2995\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/MCOM/3637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/MCOM/3637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

传递同时共轭问题询问是否存在一个排列$\tau \in S_n$,使得$b_j = \tau^{-1} a_j \tau$对所有$j = 1,2, \ldots, d$都成立,其中$a_1, a_2, \ldots, a_d$和$b_1, b_2, \ldots, b_d$是$S_n$中$d$排列的序列,每一个都生成$S_n$的传递子群。从70年代中期开始,人们就知道这个问题可以在$O(dn^2)$时间内解决。80年代末提出的运行时间为$O(dn \log(dn))$的算法不能正确处理所有输入数据。本文解决了$O(n^2 \log d / \log n + dn\log n)$时间和$O(n^{3/ 2} + dn)$空间上的传递联立共轭问题。在随机实例上的实验评估表明,我们的算法的预期运行时间相当好,在给定$d$的情况下,$n$甚至可能接近线性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The simultaneous conjugacy problem in the symmetric group
The transitive simultaneous conjugacy problem asks whether there exists a permutation $\tau \in S_n$ such that $b_j = \tau^{-1} a_j \tau$ holds for all $j = 1,2, \ldots, d$, where $a_1, a_2, \ldots, a_d$ and $b_1, b_2, \ldots, b_d$ are given sequences of $d$ permutations in $S_n$, each of which generates a transitive subgroup of $S_n$. As from mid 70' it has been known that the problem can be solved in $O(dn^2)$ time. An algorithm with running time $O(dn \log(dn))$, proposed in late 80', does not work correctly on all input data. In this paper we solve the transitive simultaneous conjugacy problem in $O(n^2 \log d / \log n + dn\log n)$ time and $O(n^{3/ 2} + dn)$ space. Experimental evaluation on random instances shows that the expected running time of our algorithm is considerably better, perhaps even nearly linear in $n$ at given $d$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信