基因组学的深度学习概念:概述

Merouane Elazami Elhassani, Loïc Maisonnasse, Antoine Olgiati, Rey Jerome, Majda Rehali, P. Duroux, V. Giudicelli, S. Kossida
{"title":"基因组学的深度学习概念:概述","authors":"Merouane Elazami Elhassani, Loïc Maisonnasse, Antoine Olgiati, Rey Jerome, Majda Rehali, P. Duroux, V. Giudicelli, S. Kossida","doi":"10.14806/ej.27.0.990","DOIUrl":null,"url":null,"abstract":"Nowadays, Deep Learning is taking the world by a storm, known as a technology that makes use of Artificial Neural Networks to automatically extrapolate knowledge from a training data set, then uses this knowledge to give predictions for unseen samples. This data driven paradigm gained a widespread adoption in many disciplines, from handwriting recognition, driving an autonomous car to cracking the 50-year-old protein folding problem. With this review, we shed some light on the concepts of Deep Learning and provide some visualizations, skim over the different architectures such as Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and touch upon the modern architectures such as Transformers and BERT. We also provide various examples targeting the genomics field, reference utilities, libraries useful for newcomers and disseminate our feedback.","PeriodicalId":72893,"journal":{"name":"EMBnet.journal","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning concepts for genomics : an overview\",\"authors\":\"Merouane Elazami Elhassani, Loïc Maisonnasse, Antoine Olgiati, Rey Jerome, Majda Rehali, P. Duroux, V. Giudicelli, S. Kossida\",\"doi\":\"10.14806/ej.27.0.990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, Deep Learning is taking the world by a storm, known as a technology that makes use of Artificial Neural Networks to automatically extrapolate knowledge from a training data set, then uses this knowledge to give predictions for unseen samples. This data driven paradigm gained a widespread adoption in many disciplines, from handwriting recognition, driving an autonomous car to cracking the 50-year-old protein folding problem. With this review, we shed some light on the concepts of Deep Learning and provide some visualizations, skim over the different architectures such as Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and touch upon the modern architectures such as Transformers and BERT. We also provide various examples targeting the genomics field, reference utilities, libraries useful for newcomers and disseminate our feedback.\",\"PeriodicalId\":72893,\"journal\":{\"name\":\"EMBnet.journal\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBnet.journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14806/ej.27.0.990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBnet.journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14806/ej.27.0.990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如今,深度学习正在风靡全球,它是一种利用人工神经网络从训练数据集中自动推断知识,然后利用这些知识对未见过的样本进行预测的技术。这种数据驱动的范式在许多学科中得到了广泛的采用,从手写识别、自动驾驶汽车到破解已有50年历史的蛋白质折叠问题。通过这篇综述,我们揭示了一些深度学习的概念,并提供了一些可视化,浏览了不同的架构,如深度神经网络(DNN),卷积神经网络(CNN),循环神经网络(RNN),并触及了现代架构,如变形金刚和BERT。我们还提供了针对基因组学领域的各种示例,参考实用程序,对新手有用的库,并传播我们的反馈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning concepts for genomics : an overview
Nowadays, Deep Learning is taking the world by a storm, known as a technology that makes use of Artificial Neural Networks to automatically extrapolate knowledge from a training data set, then uses this knowledge to give predictions for unseen samples. This data driven paradigm gained a widespread adoption in many disciplines, from handwriting recognition, driving an autonomous car to cracking the 50-year-old protein folding problem. With this review, we shed some light on the concepts of Deep Learning and provide some visualizations, skim over the different architectures such as Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and touch upon the modern architectures such as Transformers and BERT. We also provide various examples targeting the genomics field, reference utilities, libraries useful for newcomers and disseminate our feedback.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信