基于分散估计的差分载波相位导航系统紧密耦合GPS/INS集成

S. Langel, S. Khanafseh, Fang-Cheng Chan, B. Pervan
{"title":"基于分散估计的差分载波相位导航系统紧密耦合GPS/INS集成","authors":"S. Langel, S. Khanafseh, Fang-Cheng Chan, B. Pervan","doi":"10.1109/PLANS.2010.5507177","DOIUrl":null,"url":null,"abstract":"Much research has been conducted in the area of tightly coupled GPS/INS, and this work has resulted in a vast array of navigation algorithms. A common theme of these methods is that they operate on low rate GPS ranging measurements of code and carrier phase together with high rate raw inertial measurements, such as specific force and inertial angular velocity. For stand-alone (i.e., non-differential) GPS navigation applications, high data rate INS outputs can be properly accommodated with today's computer processors. For relative (i.e., differential) GPS navigation applications, the optimal analogous solution would be for the mobile user to have access to the reference station's raw inertial measurements along with its own. However, due to communication bandwidth limitations, it is generally not possible to broadcast high data rate inertial navigation data. In response, an alternative tightly-coupled, differential GPS/INS navigation system is developed here using a decentralized Kalman filtering approach, which can operate at manageable broadcast data rates.","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Tightly coupled GPS/INS integration for differential carrier phase navigation systems using decentralized estimation\",\"authors\":\"S. Langel, S. Khanafseh, Fang-Cheng Chan, B. Pervan\",\"doi\":\"10.1109/PLANS.2010.5507177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Much research has been conducted in the area of tightly coupled GPS/INS, and this work has resulted in a vast array of navigation algorithms. A common theme of these methods is that they operate on low rate GPS ranging measurements of code and carrier phase together with high rate raw inertial measurements, such as specific force and inertial angular velocity. For stand-alone (i.e., non-differential) GPS navigation applications, high data rate INS outputs can be properly accommodated with today's computer processors. For relative (i.e., differential) GPS navigation applications, the optimal analogous solution would be for the mobile user to have access to the reference station's raw inertial measurements along with its own. However, due to communication bandwidth limitations, it is generally not possible to broadcast high data rate inertial navigation data. In response, an alternative tightly-coupled, differential GPS/INS navigation system is developed here using a decentralized Kalman filtering approach, which can operate at manageable broadcast data rates.\",\"PeriodicalId\":94036,\"journal\":{\"name\":\"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS.2010.5507177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2010.5507177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在GPS/INS紧密耦合领域进行了大量的研究,并产生了大量的导航算法。这些方法的一个共同主题是,它们在编码和载波相位的低速率GPS测距测量以及高速率原始惯性测量(如比力和惯性角速度)上运行。对于独立(即非差分)GPS导航应用,高数据速率INS输出可以与当今的计算机处理器适当适应。对于相对(即差分)GPS导航应用,最佳的模拟解决方案是移动用户可以访问参考站的原始惯性测量值以及自己的惯性测量值。然而,由于通信带宽的限制,通常不可能广播高数据速率的惯性导航数据。作为回应,本文采用分散的卡尔曼滤波方法开发了另一种紧密耦合的差分GPS/INS导航系统,该系统可以在可管理的广播数据速率下运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tightly coupled GPS/INS integration for differential carrier phase navigation systems using decentralized estimation
Much research has been conducted in the area of tightly coupled GPS/INS, and this work has resulted in a vast array of navigation algorithms. A common theme of these methods is that they operate on low rate GPS ranging measurements of code and carrier phase together with high rate raw inertial measurements, such as specific force and inertial angular velocity. For stand-alone (i.e., non-differential) GPS navigation applications, high data rate INS outputs can be properly accommodated with today's computer processors. For relative (i.e., differential) GPS navigation applications, the optimal analogous solution would be for the mobile user to have access to the reference station's raw inertial measurements along with its own. However, due to communication bandwidth limitations, it is generally not possible to broadcast high data rate inertial navigation data. In response, an alternative tightly-coupled, differential GPS/INS navigation system is developed here using a decentralized Kalman filtering approach, which can operate at manageable broadcast data rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信