一些基本超几何函数的不等式

IF 0.5 Q3 MATHEMATICS
S. Kalmykov, D. Karp
{"title":"一些基本超几何函数的不等式","authors":"S. Kalmykov, D. Karp","doi":"10.15393/j3.art.2019.5210","DOIUrl":null,"url":null,"abstract":"We establish conditions for the discrete versions of logarithmic concavity and convexity of the higher order regularized basic hypergeometric function with respect simultaneous shift of all its parameters. For a particular case of Heine's basic hypergeometric function we prove logarithmic concavity and convexity with respect to the bottom parameter. We further establish a linearization identity for the generalized Tur\\'{a}nian formed by a particular case of Heine's basic hypergeometric function. Its $q=1$ case also appears to be new.","PeriodicalId":41813,"journal":{"name":"Problemy Analiza-Issues of Analysis","volume":"41 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inequalities for some basic hypergeometric functions\",\"authors\":\"S. Kalmykov, D. Karp\",\"doi\":\"10.15393/j3.art.2019.5210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish conditions for the discrete versions of logarithmic concavity and convexity of the higher order regularized basic hypergeometric function with respect simultaneous shift of all its parameters. For a particular case of Heine's basic hypergeometric function we prove logarithmic concavity and convexity with respect to the bottom parameter. We further establish a linearization identity for the generalized Tur\\\\'{a}nian formed by a particular case of Heine's basic hypergeometric function. Its $q=1$ case also appears to be new.\",\"PeriodicalId\":41813,\"journal\":{\"name\":\"Problemy Analiza-Issues of Analysis\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Problemy Analiza-Issues of Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15393/j3.art.2019.5210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problemy Analiza-Issues of Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15393/j3.art.2019.5210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

关于高阶正则化基本超几何函数的所有参数同时移位,我们建立了其对数凹性和凸性的离散形式的条件。对于Heine基本超几何函数的一种特殊情况,我们证明了其底参数的对数凹性和凸性。我们进一步建立了由Heine基本超几何函数的一种特殊情况所形成的广义Tur年的线性化恒等式。它的$q=1$案例似乎也是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inequalities for some basic hypergeometric functions
We establish conditions for the discrete versions of logarithmic concavity and convexity of the higher order regularized basic hypergeometric function with respect simultaneous shift of all its parameters. For a particular case of Heine's basic hypergeometric function we prove logarithmic concavity and convexity with respect to the bottom parameter. We further establish a linearization identity for the generalized Tur\'{a}nian formed by a particular case of Heine's basic hypergeometric function. Its $q=1$ case also appears to be new.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信