结合压力驱动弹性变形的微环空几何泄漏

K. Beltrán-Jiménez, H. J. Skadsem, D. Gardner, S. Kragset, M. Souza
{"title":"结合压力驱动弹性变形的微环空几何泄漏","authors":"K. Beltrán-Jiménez, H. J. Skadsem, D. Gardner, S. Kragset, M. Souza","doi":"10.4043/29718-ms","DOIUrl":null,"url":null,"abstract":"\n The cement between the casings and formation is a critical barrier element for ensuring zonal isolation. Shrinkage during curing and mechanical or thermal loads applied during production can compromise the cement and result in fluid migration paths such as micro-annuli. The fluid pressure inside the micro-annulus will cause elastic deformation of the channel walls. This deformation should be accounted for when developing methodologies for interpreting micro-annulus fluid leakage experiments and the application to real well conditions. Full-size test sections have been constructed with known cement defects and leakage properties to investigate barrier verification technologies. A micro-annulus test cell, instrumented with strain and pressure gauges, has been leakage tested. Leakage rates have been correlated to the micro-annulus size using a model coupling micro-annulus pressure to radial deformation of the cement and casing. The semi-analytical model and the predictions are compared to the experimental data. Within the regime of linear elasticity, the radial deformation of the cell wall is proportional to the pressure in the micro-annulus. During leakage testing, the pressure-driven radial deformation of the cell materials is coupled to the variation of the liquid friction pressure gradient along the axial length of the micro-annulus. The pressure gradient is greatest at the outlet of the micro-annulus. The models presented have been used to improve the interpretation of fluid flow during micro-annulus leakage experiments. An improved understanding of fluid leakage mechanisms through micro-annuli can be applied to field cases such as the interpretation and choice of treatment for sustained casing pressure build-up.","PeriodicalId":11089,"journal":{"name":"Day 2 Wed, October 30, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Leakage Through Micro-Annulus Geometries Incorporating Pressure-Driven Elastic Deformation\",\"authors\":\"K. Beltrán-Jiménez, H. J. Skadsem, D. Gardner, S. Kragset, M. Souza\",\"doi\":\"10.4043/29718-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The cement between the casings and formation is a critical barrier element for ensuring zonal isolation. Shrinkage during curing and mechanical or thermal loads applied during production can compromise the cement and result in fluid migration paths such as micro-annuli. The fluid pressure inside the micro-annulus will cause elastic deformation of the channel walls. This deformation should be accounted for when developing methodologies for interpreting micro-annulus fluid leakage experiments and the application to real well conditions. Full-size test sections have been constructed with known cement defects and leakage properties to investigate barrier verification technologies. A micro-annulus test cell, instrumented with strain and pressure gauges, has been leakage tested. Leakage rates have been correlated to the micro-annulus size using a model coupling micro-annulus pressure to radial deformation of the cement and casing. The semi-analytical model and the predictions are compared to the experimental data. Within the regime of linear elasticity, the radial deformation of the cell wall is proportional to the pressure in the micro-annulus. During leakage testing, the pressure-driven radial deformation of the cell materials is coupled to the variation of the liquid friction pressure gradient along the axial length of the micro-annulus. The pressure gradient is greatest at the outlet of the micro-annulus. The models presented have been used to improve the interpretation of fluid flow during micro-annulus leakage experiments. An improved understanding of fluid leakage mechanisms through micro-annuli can be applied to field cases such as the interpretation and choice of treatment for sustained casing pressure build-up.\",\"PeriodicalId\":11089,\"journal\":{\"name\":\"Day 2 Wed, October 30, 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, October 30, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/29718-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, October 30, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29718-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

套管与地层之间的水泥是确保层间隔离的关键屏障。固化过程中的收缩和生产过程中施加的机械或热载荷会破坏水泥,导致流体运移路径,如微环空。微环内的流体压力会引起通道壁的弹性变形。在开发解释微环空流体泄漏实验和应用于实际井况的方法时,应该考虑到这种变形。在已知水泥缺陷和泄漏特性的情况下,构建了全尺寸测试截面,以研究屏障验证技术。一个微环空测试单元,配有应变和压力表,进行了泄漏测试。利用耦合微环空压力与水泥和套管径向变形的模型,将泄漏率与微环空尺寸相关联。将半解析模型和预测结果与实验数据进行了比较。在线弹性范围内,细胞壁的径向变形与微环空中的压力成正比。在泄漏测试过程中,压力驱动的微环材料径向变形与液体摩擦压力梯度沿微环空轴向长度的变化相耦合。微环空出口处压力梯度最大。所建立的模型已用于改进微环空泄漏实验中流体流动的解释。通过微环空对流体泄漏机制的更好理解可以应用于现场情况,例如解释和选择持续套管压力积聚的处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leakage Through Micro-Annulus Geometries Incorporating Pressure-Driven Elastic Deformation
The cement between the casings and formation is a critical barrier element for ensuring zonal isolation. Shrinkage during curing and mechanical or thermal loads applied during production can compromise the cement and result in fluid migration paths such as micro-annuli. The fluid pressure inside the micro-annulus will cause elastic deformation of the channel walls. This deformation should be accounted for when developing methodologies for interpreting micro-annulus fluid leakage experiments and the application to real well conditions. Full-size test sections have been constructed with known cement defects and leakage properties to investigate barrier verification technologies. A micro-annulus test cell, instrumented with strain and pressure gauges, has been leakage tested. Leakage rates have been correlated to the micro-annulus size using a model coupling micro-annulus pressure to radial deformation of the cement and casing. The semi-analytical model and the predictions are compared to the experimental data. Within the regime of linear elasticity, the radial deformation of the cell wall is proportional to the pressure in the micro-annulus. During leakage testing, the pressure-driven radial deformation of the cell materials is coupled to the variation of the liquid friction pressure gradient along the axial length of the micro-annulus. The pressure gradient is greatest at the outlet of the micro-annulus. The models presented have been used to improve the interpretation of fluid flow during micro-annulus leakage experiments. An improved understanding of fluid leakage mechanisms through micro-annuli can be applied to field cases such as the interpretation and choice of treatment for sustained casing pressure build-up.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信