A. P. S. Kumar, P. Karthikeyan, P. Paramasivam, A. Kishan, Azhar Hasan
{"title":"考虑Knudsen效应的两相材料有效导热系数估算:一种分析方法","authors":"A. P. S. Kumar, P. Karthikeyan, P. Paramasivam, A. Kishan, Azhar Hasan","doi":"10.4103/0976-8580.99300","DOIUrl":null,"url":null,"abstract":"In this article, the analytic model has been developed to estimate the effective thermal conductivity (ETC) of two-phase materials based on the unit cell approach by considering the concentration, conductivity ratio, contact resistance, and Knudsen effect. The derivations of algebraic equations for standard geometry, such as hexagon and octagon cylinder models are developed based on parallel isotherm approach. The developed analytic model has been used to predict the thermal conductivity of various two-phase materials (conductivity ratio, α = 3.11-310.86 and concentration, ν = 0.05 and 0.74). The present models are validated using the standard models and compared with the experimental data. Further the comparison is made between the present models and existing models. The results are in good agreement.","PeriodicalId":53400,"journal":{"name":"Pakistan Journal of Engineering Technology","volume":"18 1","pages":"118"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation of Effective Thermal Conductivity of Two-Phase Materials by Considering the Knudsen Effect: An Analytical Approach\",\"authors\":\"A. P. S. Kumar, P. Karthikeyan, P. Paramasivam, A. Kishan, Azhar Hasan\",\"doi\":\"10.4103/0976-8580.99300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the analytic model has been developed to estimate the effective thermal conductivity (ETC) of two-phase materials based on the unit cell approach by considering the concentration, conductivity ratio, contact resistance, and Knudsen effect. The derivations of algebraic equations for standard geometry, such as hexagon and octagon cylinder models are developed based on parallel isotherm approach. The developed analytic model has been used to predict the thermal conductivity of various two-phase materials (conductivity ratio, α = 3.11-310.86 and concentration, ν = 0.05 and 0.74). The present models are validated using the standard models and compared with the experimental data. Further the comparison is made between the present models and existing models. The results are in good agreement.\",\"PeriodicalId\":53400,\"journal\":{\"name\":\"Pakistan Journal of Engineering Technology\",\"volume\":\"18 1\",\"pages\":\"118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pakistan Journal of Engineering Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/0976-8580.99300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/0976-8580.99300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Estimation of Effective Thermal Conductivity of Two-Phase Materials by Considering the Knudsen Effect: An Analytical Approach
In this article, the analytic model has been developed to estimate the effective thermal conductivity (ETC) of two-phase materials based on the unit cell approach by considering the concentration, conductivity ratio, contact resistance, and Knudsen effect. The derivations of algebraic equations for standard geometry, such as hexagon and octagon cylinder models are developed based on parallel isotherm approach. The developed analytic model has been used to predict the thermal conductivity of various two-phase materials (conductivity ratio, α = 3.11-310.86 and concentration, ν = 0.05 and 0.74). The present models are validated using the standard models and compared with the experimental data. Further the comparison is made between the present models and existing models. The results are in good agreement.